基于参数优化VMD与宽卷积神经网络的齿轮箱故障诊断
DOI:
CSTR:
作者:
作者单位:

1.上海电机学院电气学院 上海 201306;2.上海电机学院电子信息学院 上海 201306

作者简介:

通讯作者:

中图分类号:

TH165+.3; TN0

基金项目:

国家自然科学基金面上项目(62076160)、上海市自然科学基金面上项目(21ZR1424700)、上海市青年科技启明星项目(23QA1403800)资助


Fault diagnosis for gearbox based on parameter optimization VMD combined with wide convolutional neural network
Author:
Affiliation:

1.School of Electrical Engineering, Shanghai Dianji University,Shanghai 201306, China; 2.School of Electronic Information, Shanghai Dianji University,Shanghai 201306, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对齿轮箱故障诊断中因噪声干扰等因素导致的诊断效果不佳问题,提出一种基于改进的黑翅鸢优化算法(GBKA)优化变分模态分解(VMD)和宽卷积神经网络(WDCNN)的故障诊断方法。首先,针对黑翅鸢算法(BKA)易陷入局部最优和过早收敛的缺陷,引入遗传算法的基因交叉重组与变异操作对BKA进行改进;其次,利用改进后的GBKA对VMD参数寻优,通过相关系数筛选模态分量并重构信号;最后,将重构信号输入WDCNN模型,实现故障分类。结果表明,在测试函数上,GBKA相比BKA具有更优的寻优性能;在两种工况下,该方法的平均故障分类准确率分别达到99.645%和99.978%,优于其他对比方法,并且在噪声实验中受到噪声的影响较小,验证了所提模型的有效性和稳定性,为齿轮箱故障诊断提供了一种可靠的解决方案。

    Abstract:

    A fault diagnosis method based on an improved black winged kite optimization algorithm (GBKA) optimized variational mode decomposition (VMD) and wide convolutional neural network (WDCNN) is proposed to address the issue of poor diagnostic performance caused by noise interference and other factors in gearbox fault diagnosis. Firstly, in response to the shortcomings of the black winged kite algorithm (BKA), which is prone to falling into local optima and premature convergence, genetic algorithm′s gene crossover recombination and mutation operations are introduced to improve BKA; secondly, using the improved GBKA to optimize VMD parameters, modal components are screened through correlation coefficients and the signal is reconstructed; finally, the reconstructed signal is input into the WDCNN model to achieve fault classification. The results indicate that GBKA has better optimization performance compared to BKA in the test function; under two operating conditions, the average fault classification accuracy of this method reached 99.645% and 99.978%,which is superior to other comparative methods. In addition, it was less affected by noise in the noise experiment, verifying the effectiveness and stability of the proposed model and providing a reliable solution for gearbox fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

万佳诚,曾宪文,李靖超.基于参数优化VMD与宽卷积神经网络的齿轮箱故障诊断[J].电子测量技术,2025,48(10):25-32

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告