基于YOLO-Crab与改进的DeepSORT的水下河蟹检测与计数方法
DOI:
CSTR:
作者:
作者单位:

江苏大学电气信息工程学院 镇江 212013

作者简介:

通讯作者:

中图分类号:

TP391.4;TN919.8

基金项目:

国家自然科学基金(61973141)项目资助


Detection and counting method for underwater crabs based on YOLO-Crab and the improved DeepSORT
Author:
Affiliation:

School of Electrical and Information Engineering, Jiangsu University,Zhenjiang 212013, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现淡水池塘中无人水产养殖船的精准投饵,提出了YOLO-Crab+改进的DeepSORT的河蟹计数方法。首先,针对水下河蟹图像模糊、对比度低等问题,提出了一种基于CLAHE预处理下的YOLOv8的河蟹检测模型YOLO-Crab。YOLO-Crab在主干中增加坐标注意力机制,提高检测精度,同时,通过SimSPPF池化和GSConv+Slim Neck设计减轻模型量级。改进的DeepSORT算法用DIOU匹配替代IOU匹配来解决水草遮挡导致的河蟹ID跳变问题。实验表明,YOLO-Crab模型检测精度和F1分别达到了97.3%和94%,计数方法平均精度为81%。同时,将模型移植到Jeston AGX Orin上,检测精度达到95%,检测速度为60 fps,提升了50%,计数精度为78%,能够为无人水产养殖船精准投饵提供可靠依据。

    Abstract:

    To realize accurate feeding of unmanned aquaculture vessels in freshwater ponds, a river crab counting method with YOLO-Crab + improved DeepSORT is developed. First, to address the problems of blurring and low contrast of underwater river crab images, a river crab detection model YOLO-Crab based on YOLOv8 under the preprocessing of CLAHE is proposed.YOLO-Crab adds the coordinate attention mechanism in the backbone to improve the detection precision, and, at the same time, reduces the model magnitude by SimSPPF pooling and GSConv+Slim Neck design to mitigate the model magnitude. The improved DeepSORT algorithm replaces IOU matching with DIOU matching to solve the problem of river crab ID jumping caused by aquatic grass occlusion. Experiments show that the detection precision and F1 of YOLO-Crab model reach 97.3% and 94%, respectively, and the average precision of counting methods is 81%. At the same time, the model was transplanted to Jeston AGX Orin, and the detection accuracy reached 95%, the detection speed was 60 fps, an increase of 50%, and the counting accuracy was 78%, which can provide a reliable basis for accurate feeding of unmanned aquaculture vessels.

    参考文献
    相似文献
    引证文献
引用本文

吴佳文,姬伟,翟科龙,许波.基于YOLO-Crab与改进的DeepSORT的水下河蟹检测与计数方法[J].电子测量技术,2025,48(17):132-141

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告