基于改进CNN-BiGRU-A的涡扇发动机RUL智能预测与维护
DOI:
CSTR:
作者:
作者单位:

1.沈阳大学应用技术学院 沈阳 110044; 2.沈阳大学机械工程学院 沈阳 110044

作者简介:

通讯作者:

中图分类号:

TP391.5; TN807

基金项目:

国家自然科学基金(71672117)、中央引导地方科技发展资金计划(2021JH6/10500149)项目资助


Intelligent prediction and maintenance strategy of turbofan engine RUL based on improved CNN-BiGRU-A
Author:
Affiliation:

1.School of Applied Technology, Shenyang University, Shenyang 110044, China; 2.School of Mechanical Engineering, Shenyang University, Shenyang 110044, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现代工业系统大多关注其预测性能而很少同时考虑设备维护决策问题,提出一种数据驱动的动态预测性维护方法,以避免系统因故障突然停机,确保系统安全运行。首先,通过对涡扇发动机的健康状态进行实时监控,获取运行数据,以此建立基于注意力机制结合卷积-双向门控循环单元的涡扇发动机剩余使用寿命模型,利用黑鹰优化算法对该模型的超参数进行调优;其次,将监测数据输入训练好的集成网络,并根据预测的剩余使用寿命,提出一种具有不确定系统任务周期的动态预测性维护策略;最后,以C-MAPSS数据集为例,验证本文所提方法能够提高设备预测性能,预测后维护效果良好。

    Abstract:

    Aiming at the problem that modern industrial systems tend to focus on their predictive performance while paying little attention to equipment maintenance decision-making, a data-driven dynamic predictive maintenance method is proposed to avoid sudden system failures and ensure safe operation. First, the health status of the turbofan engine is monitored in real-time to obtain operating data, which is used to establish a turbofan engine remaining useful life model based on a convolutional neural networks-bidirectional gated recurrent unit-attention mechanism. The hyperparameters of the CNN-BiGRU-A are optimized using the black hawk optimization algorithm; second, the monitored data is input into the trained integrated network, and a dynamic predictive maintenance strategy with uncertain system task cycle is proposed based on the predicted remaining useful life; finally, the proposed method is verified by using the C-MAPSS data set to show that it can improve equipment predictive performance and perform good predictive maintenance afterward.

    参考文献
    相似文献
    引证文献
引用本文

董海,吴越童.基于改进CNN-BiGRU-A的涡扇发动机RUL智能预测与维护[J].电子测量技术,2025,48(18):100-110

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-13
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告