非完美SIC D2D-NOMA系统吞吐量最大化功率分配
DOI:
CSTR:
作者:
作者单位:

1.辽宁石油化工大学人工智能与软件学院 抚顺 113001;2.辽宁石油化工大学信息与控制工程学院 抚顺 113001

作者简介:

通讯作者:

中图分类号:

TN929.5

基金项目:

国家自然科学基金(62203202)项目资助


Throughput-maximizing power allocation for D2D-NOMA system under imperfect SIC
Author:
Affiliation:

1.School of Artificial Intelligence and Software,Liaoning Petrochemical University,Fushun 113001,China; 2.School of Information and Control Engineering,Liaoning Petrochemical University,Fushun 113001,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对D2D-NOMA系统在非完美串行干扰消除条件下的吞吐量最大化问题,提出了一种基于非完美SIC的D2D-NOMA系统吞吐量最大化算法。首先在蜂窝用户和D2D用户的服务质量、最大发射功率下,考虑非完美SIC条件,建立一个以D2D-NOMA系统的吞吐量最大化为目标的优化模型。然后将模型转换为以吞吐量为奖励的马尔可夫决策过程。利用TD3算法设计了一个功率分配算法,实现了系统吞吐量最大化。经仿真验证,所提出的算法与DDPG算法、遗传算法和随机功率分配算法相比,非完美SIC下D2D-NOMA系统的吞吐量分别提高了约14%、25%和40%,也展现出更优的收敛性和公平性。

    Abstract:

    Aiming at the throughput maximization problem of D2D-NOMA system under the condition of imperfect successive interference cancellation, a D2D-NOMA system throughput maximization algorithm based on imperfect SIC is proposed. Firstly, under the constraints of service quality and maximum transmission power of cellular users and D2D users, an optimization model with the goal of maximizing the throughput of D2D-NOMA system is established by considering the imperfect SIC condition. Then the model is converted into a Markov decision process with throughput as reward. A power allocation algorithm is designed using the TD3 algorithm to maximize the system throughput. The simulation results show that compared with the DDPG algorithm, the genetic algorithm and the random power allocation algorithm, the proposed algorithm improves the throughput of D2D-NOMA system under imperfect SIC by 14%, 25% and 40%, respectively, and also shows better convergence and fairness.

    参考文献
    相似文献
    引证文献
引用本文

张东方,叶成荫.非完美SIC D2D-NOMA系统吞吐量最大化功率分配[J].电子测量技术,2025,48(8):80-87

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-23
  • 出版日期:
文章二维码