基于改进SSA和CNN-BiLSTM-Attention的UWB测距误差缓解算法
DOI:
CSTR:
作者:
作者单位:

1.南宁理工学院信息工程学院 桂林 541006;2.桂林理工大学广西高校先进制造与自动化技术重点实验室 桂林 541006;3.桂林航天工业学院广西特种工程装备与控制重点实验室 桂林 541004

作者简介:

通讯作者:

中图分类号:

TN92

基金项目:

国家自然科学基金(61741303)、广西空间信息与测绘重点实验室基金(21-238-21-16)项目资助


UWB ranging error mitigation algorithm based on improved SSA and CNN-BiLSTM-Attention
Author:
Affiliation:

1.School of Information Engineering, Nanning College of Technology, Guilin 541006,China;2.Key Laboratory of Advanced Manufacturing and Automation Technology,Guilin University of Technology,Guilin 541006,China;3.Guangxi Key Laboratory of Special Engineering Equipment and Control,Guilin University of Aerospace Technology,Guilin 541004,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对超宽带在实际环境下存在的测距误差问题,提出了基于改进麻雀搜索算法和卷积双向长短期注意力模型的超宽带测距误差缓解算法。采用Tent映射,利用自适应调整方法,结合北方苍鹰算法,并在跟随阶段采用螺旋飞行策略对SSA算法改进,提高算法的全局搜索性能,避免陷入局部最优的情况,将改进后的算法命名为TANSSSA。利用BiLSTM模型和注意力机制改进CNN-LSTM模型,构建CNN-BiLSTM-Attention模型,提高模型对长序列数据的处理能力,使得模型对数据有更精确的权重分配。使用TANSSSA优化CNN-BiLSTM-Attention模型的超参数,构建TANSSSA-CNN-BiLSTM-Attention模型。在模型性能验证实验中,对比SSA-CNN-BiLSTM-Attention、CNN-BiLSTM-Attention、CNN-BiLSTM、CNN-LSTM-Attention、CNN-LSTM、GRU以及TCN模型,平均绝对误差降低了12.05%~62.31%。在实际环境中,TANSSSA-CNN-BiLSTM-Attention对比其他7种模型,平均绝对误差降低了45.70%~83.82%,测距误差得到有效地缓解。

    Abstract:

    Aiming at the ranging error problem of ultra-wideband in actual environment, a UWB ranging error mitigation algorithm based on improved sparrow search algorithm and convolutional neural network bi-directional long short-term memory attention model is proposed. Tent mapping is adopted, adaptive adjustment method is used, combined with northern goshawk algorithm, and spiral flight strategy is adopted in the following stage to improve the SSA algorithm, improve the global search performance of the algorithm and avoid falling into the local optimum. The BiLSTM model and attention mechanism are used to improve the CNN-LSTM model, and the CNN-BiLSTM-Attention model is constructed to improve the model′s ability to process long sequence data, so that the model has more accurate weight distribution for data. TANSSSA is used to optimize the hyperparameters of the CNN-BiLSTM-Attention model, and the TANSSSA-CNN-BiLSTM-Attention model is constructed. In the model performance verification experiment, the average absolute error of SSA-CNN-BiLSTM-Attention, CNN-BiLSTM-Attention, CNN-BiLSTM, CNN-LSTM-Attention, CNN-LSTM, GRU and TCN models was reduced by 12.05%~62.31%. In the actual environment, the average absolute error of TANSSSA-CNN-BiLSTM-Attention was reduced by 45.70%~83.82% compared with the other seven models, and the ranging error was effectively alleviated.

    参考文献
    相似文献
    引证文献
引用本文

张翠,刘津铭,郑新鹏,张烈平.基于改进SSA和CNN-BiLSTM-Attention的UWB测距误差缓解算法[J].电子测量技术,2025,48(10):51-61

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告