基于多尺度特征融合的跨视角点云步态识别
DOI:
CSTR:
作者:
作者单位:

1.中国民用航空飞行学院科研处 德阳 618307;2.中国民用航空飞行学院计算机学院 德阳 618307

作者简介:

通讯作者:

中图分类号:

TN249

基金项目:

西藏自治区重点研发计划(XZ202101ZY0017G)、中央高校基本科研业务费项目(24CAFUC03039)资助


Cross-view point cloud gait recognition based on multi-scale feature fusion
Author:
Affiliation:

1.Scientific Research Office, Civil Aviation Flight University of China,Deyang 618307, China; 2.School of Computer Science, Civil Aviation Flight University of China,Deyang 618307, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有的步态识别方法大多基于剪影或骨骼,然而二维信息缺乏对人体空间几何结构的完整描述,在视角变化、遮挡等复杂条件下识别效果性能有限,为此本文提出了一种结合全局多尺度和局部细粒度特征的点云步态识别方法。该方法将点云投影为深度步态图,引入跨视角数据变换模块提升模型的视角不变性,采用改进的残差网络提取丰富的全局多尺度步态特征,最后使用KAN网络增强局部细粒度步态特征的表征力。实验结果表明,基于点云的步态识别方法远优于基于二维信息的方法,该方法在SUSTech1K公开数据集上取得了92.65%的平均Rank1准确率,相较于先进方法LidarGait提升了6.02%,充分验证了该方法的有效性。

    Abstract:

    Most of the existing gait recognition methods are based on silhouettes or skeletons, however, the 2D information lacks a complete description of the spatial geometry of the human body, and the performance of the recognition effect is limited under complex conditions such as view angle change and occlusion, for this reason, this paper proposes a point cloud gait recognition method that combines global multiscale and local fine-grained features. The method projects the point cloud as a depth gait map, introduces a cross-view data transformation module to improve the viewpoint invariance of the model, uses an improved residual network to extract rich global multi-scale gait features, and finally uses a KAN network to enhance the representativeness of local fine-grained gait features. The experimental results show that the gait recognition method based on point cloud is far better than the method based on 2D information, which achieves an average Rank1 accuracy of 92.65% on the SUSTech1K public dataset, which is a 6.02% improvement compared to the advanced method LidarGait, which fully verifies the effectiveness of the method.

    参考文献
    相似文献
    引证文献
引用本文

魏永超,谢卫鑫,张娅岚,王应海,孙如新.基于多尺度特征融合的跨视角点云步态识别[J].电子测量技术,2025,48(10):109-116

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告