改进YOLO11的学生课堂行为检测算法
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学自动化学院 南京 210044;2.无锡学院物联网工程学院 无锡 214105

作者简介:

通讯作者:

中图分类号:

TP309.2;TN40

基金项目:

无锡市“太湖之光”科技攻关(基础研究)项目(K20241046)、国家传感网工程技术研究中心开放课题基金(2024YJZXKFKT02)、江苏高校哲学社会科学研究一般项目(2023SJYB0919)、无锡学院引进人才科研启动专项经费(2022r043)项目资助


Improved YOLO11 algorithm for student classroom behavior detection
Author:
Affiliation:

1.School of Automation, Nanjing University of Information Science and Technology,Nanjing 210044, China; 2.School of Internet of Things Engineering, Wuxi University,Wuxi 214105, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对YOLO11在课堂行为检测中存在复杂细节丢失、多尺度感知能力不足、计算效率低以及检测精度低的问题,提出了一种改进的ATDW-YOLO算法。首先,在颈部网络中构建了自适应极化特征融合模块,提升特征语义融合能力,更好地捕捉复杂细节。其次,设计了任务动态对齐检测头模块,提高模型在多尺度目标上的识别能力。然后,在主干网络中引入动态分组卷积混洗转换模块,增强特征表示能力,实现网络轻量化。最后,采用Wise-IoU函数替代CIoU损失函数,改善边界框的拟合能力,提高检测精度。实验结果表明,与YOLO11n模型相比,ATDW-YOLO的mAP0.5和mAP0.5:0.95分别提高了3.1%和4.0%,而模型参数量、计算量和模型大小分别降低了23.1%、9.5%和23.6%,显著提升了检测精度,实现网络轻量化。

    Abstract:

    In response to the issues of complex details loss, insufficient multi-scale perception, low computational efficiency, and low detection accuracy in YOLO11 for classroom behavior detection, an improved ATDW-YOLO algorithm is proposed. Firstly, an Adaptive Polarized Feature Fusion module is constructed in the neck network to im-prove feature semantic fusion capabilities and better capture complex details. Secondly, a task dynamic align detection head module is designed to enhance the model′s recognition ability across multi-scale targets. Subsequently, a dynamic group convolution shuffle transformer module is introduced into the back-bone network to improve feature representation and achieve network lightweight. Finally, the Wise-IoU function replaces the CIoU loss function to improve the bounding box fitting capability and detection accuracy. Experimental results demonstrate that compared to the YOLO11n model, ATDW-YOLO improves mAP0.5 and mAP0.5:0.95 by 3.1% and 4.0%, respectively, while reducing model parameters, computational complexity, and model size by 21.6%, 7.4%, and 20.6%, respectively, significantly enhancing detection accuracy and achieving model lightweight.

    参考文献
    相似文献
    引证文献
引用本文

曹倩,曹燚,钱承山.改进YOLO11的学生课堂行为检测算法[J].电子测量技术,2025,48(15):185-198

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-29
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告