京张铁路沿线强降雨灾害的风险评估与区划
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学电子与信息工程学院 南京 210044;2.南通理工学院电气与能源工程学院 南通 226001;3.中 国铁道科学研究院集团有限公司电子计算技术研究所 北京 100081;4.北京经纬信息技术有限公司 北京 100081

作者简介:

通讯作者:

中图分类号:

P426.6; TN929.5

基金项目:

国家自然科学基金(62171228)、国家自然科学基金高铁联合基金(U2268217)项目资助


Risk assessment and zoning of heavy rainfall disasters along Beijing-Zhangjiakou Railway
Author:
Affiliation:

1.School of Electronics and Information Engineering, Nanjing University of Information Science & Technology,Nanjing 210044,China; 2.School of Electrical and Energy Engineering, Nantong Institute of Technology,Nantong 226001,China;3.Institute of Computing Technologies, China Academy of Railway Sciences Co.,Ltd.,Beijing 100081,China;4.Beijing Jingwei Information Technologies Co.,Ltd.,Beijing 100081, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对京张铁路沿线频繁遭受强降雨灾害的问题,本文使用了层次分析法与随机森林相结合的组合权重分析法来对其进行风险评估与区划,以方便设立灾害预警。基于铁路沿线雨量传感器网获得的数据集,对包括致灾因子危险性、孕灾环境敏感性和承灾易损性三类指标进行权重的分配来建立铁路沿线受强降雨灾害的风险模型。结合雨量和地质数据计算出风险性大小,结果通过ArcGIS软件绘图示意,实验结果表明风险最高的地区分布于八达岭至南口段,青龙桥段等地,基本符合受灾实况。相比单一的层次分析法拥有更高的准度,为更好的建立灾害预警与完善救援系统提供了一定的参考作用。

    Abstract:

    To address the frequent severe rainfall disasters along the Beijing-Zhangjiakou Railway, this study employs a combined weighting analysis method integrating the Analytic Hierarchy Process and Random Forest algorithm for risk assessment and zoning to facilitate disaster warning. Utilizing data from rainfall sensor networks along the railway line, a risk model was established by assigning weights to three categories of indicators: hazard factor risk, sensitivity of disaster-pregnant environments, and vulnerability of disaster-bearing bodies. Risk levels were calculated by integrating rainfall and geological data, with visualization achieved through ArcGIS software. Experimental results identified the highest-risk areas in the Badaling-Nankou section and Qinglongqiao segment, consistent with historical disaster records. Compared with single-method AHP approaches, this hybrid method demonstrates enhanced accuracy, providing valuable references for optimizing disaster warning systems and improving emergency response mechanisms.

    参考文献
    相似文献
    引证文献
引用本文

施林龙,行鸿彦,赵晖.京张铁路沿线强降雨灾害的风险评估与区划[J].电子测量技术,2025,48(13):9-16

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告