基于网络结构轻量化的道路监控检测模型
DOI:
CSTR:
作者:
作者单位:

1.河北大学数学与信息科学学院 保定 071000;2.河北省机器学习与计算智能重点实验室 保定 071000; 3.河北农业大学理学院 保定 071000

作者简介:

通讯作者:

中图分类号:

TP391.7; U495; TN919.8

基金项目:

河北省科技平台项目-创新能力提升计划(22567623H)项目资助


Road surveillance detection model based on lightweight network architecture
Author:
Affiliation:

1.College of Mathematics and Information Science, Hebei University,Baoding 071000,China;2.Hebei Key Laboratory of Machine Learning and Computational Intelligence,Baoding 071000,China;3.College of Science, Hebei Agricultural University,Baoding 071000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有交通监控检测模型参数量大,计算复杂度高,在一些边缘设备上部署会受到硬件资源限制的问题,对YOLOv8模型的网络结构进行了针对性改进,提出一种基于网络结构轻量化的道路监控检测模型。首先在骨干网络部分:采用极简网络架构VanillaNET替代原本的主干网络的中间部分进行特征提取,以减少模型的参数量和整体的计算复杂度。接着将FasterNet的优势与EMA注意力机制相结合,应用到骨干网络的C2f模块,有效降低了内存访问量,并一定程度上提升了模型的检测能力。然后将SPPCSPC结合分组卷积,提出G-SPPCSPC模块,提升了模型对监控视角下不同大小尺度信息的提取能力。最后,在颈部网络:将轻量级注意力机制MLCA结合到C2f模块,目的是减少无关背景信息对于道路监控检测的干扰。实验结果表明,改进后的模型参数量降低了53.3%,模型尺寸减小了51.3%,计算复杂度下降了48.1%,mAP/50%达到了93.7%,FPS达到了280.5。模型在显著降低模型参数量和计算复杂度的同时,保持了较高的检测精度和速度,适用于边缘设备的部署,具有较高的实用价值。

    Abstract:

    To address the issues of high parameter count and computational complexity in existing traffic surveillance detection models, which limit their deployment on edge devices due to hardware resource constraints, this study proposes a lightweight network architecture-based road surveillance detection model by specifically modifying the YOLOv8 model. In the backbone network, the minimalist architecture VanillaNET is introduced to replace the intermediate part of the original network for feature extraction, significantly reducing the model′s parameter count and overall computational complexity. The advantages of FasterNet are combined with the EMA attention mechanism and applied to the C2f module in the backbone network, effectively reducing memory access and enhancing the model′s detection capability. Additionally, the G-SPPCSPC module is proposed by integrating SPPCSPC with grouped convolutions, improving the model′s ability to extract multi-scale information under varying surveillance perspectives. Finally, in the neck network, the lightweight attention mechanism MLCA is incorporated into the C2f module to reduce interference from irrelevant background information in road surveillance detection. Experimental results show that the improved model reduces the parameter count by 53.3%, model size by 51.3%, and computational complexity by 48.1%, while achieving a mAP50/% of 93.7% and an FPS of 280.5. The model maintains high detection accuracy and speed while significantly reducing parameter count and computational complexity, making it suitable for deployment on edge devices and demonstrating high practical value.

    参考文献
    相似文献
    引证文献
引用本文

来超凡,花强,母静越,张博.基于网络结构轻量化的道路监控检测模型[J].电子测量技术,2025,48(13):148-156

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告