基于CNN-BiGRU-Attention的脱硫系统出口二氧化硫动态预测模型
DOI:
CSTR:
作者:
作者单位:

1.新疆工程学院能源工程学院 乌鲁木齐 830023;2.中国矿业大学低碳能源与动力工程学院 徐州 221116

作者简介:

通讯作者:

中图分类号:

X773;TN06

基金项目:

国家自然科学基金(72361033)、2024新疆维吾尔自治区重大科技专项-全烧高碱煤下的锅炉快速变负荷研究(2024A01005-1)、中国华能集团公司科技项目(HNKJ23-HF31)资助


Dynamic prediction model of sulphur dioxide concentration for WFGD system based on CNN-BiGRU-Attention
Author:
Affiliation:

1.School of Energy Engineering, Xinjiang Institute of Engineering,Urumqi 830023, China;2.School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology,Xuzhou 221116, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对深度调峰下湿法烟气脱硫系统出口 SO2 排放浓度难以精准测量,提出一种基于动态建模的卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(Attention)相结合的 SO2 浓度预测模型。基于核主成分分析对原始数据进行关键特征筛选得到 7 个特征变量作为输入特征。将注意力机制引入CNN和BiGRU,建立脱硫系统出口 SO2 浓度预测模型,并以某在役超临界600 MW机组的脱硫系统为研究对象进行了仿真实验。仿真结果显示,本文所建立动态模型的平均绝对误差为 0.706 4 mg/m3、均方根误差为0.912 5 mg/m3、平均相对误差为6.27%,与CNN-BiGRU相比,分别下降了25.07%、23.45%和17.28%,更低于CNN和BiGRU;动态模型的决定系数为96.74%,与CNN-BiGRU、BiGRU和CNN模型相比,分别提高了3.91%、5.26%和9.66%。表明基于CNN-BiGRU-Attention的动态模型具有较高的预测精度和学习能力,能够准确的预测脱硫系统出口SO2浓度变化趋势。

    Abstract:

    A dynamic prediction model of sulfur dioxide concentration is proposed to address the challenge of accurate measurement of sulfur dioxide emission concentration at the exit of a limestone-gypsum wet flue gas desulfurization system under deep peaking.The model integrates a convolutional neural network (CNN), a bidirectional gated recurrent unit (BiGRU), and an attention mechanism to predict the sulfur dioxide concentration. The model developes utilizes kernel principal component analysis to determine seven characteristic variables, which are then used as inputs to the model.The attentional mechanism is combined with CNN and BiGRU to construct a model for predicting SO2concentration at the outlet of the desulfurization system. A simulation experiment is conducted with the FDG system of an operating 600 MW supercritical unit as the research object. The simulation results demonstrate that the average absolute error MSE of the dynamic model established in this paper is 0.706 4 mg/m3, the root mean square error RMSE is 0.912 5 mg/m3, and the average relative error is 6.27%, which is 25.07%, 23.45%, and 17.28% lower compared with CNN-BiGRU, and even lower than CNN and BiGRU; The coefficient of determination of the dynamic model was 96.74%, which was 3.91%, 5.26%, and 9.66% higher than CNN-BiGRU, BiGRU, and CNN models respectively. This outcome indicates that the dynamic model based on CNN-BiGRU-Attention exhibits high prediction accuracy and learning ability, and can accurately predict the trend of SO2 concentration at the outlet of the desulfurization system.

    参考文献
    相似文献
    引证文献
引用本文

高钾,田雪峰,蒋甲丁,彭献永,周怀春.基于CNN-BiGRU-Attention的脱硫系统出口二氧化硫动态预测模型[J].电子测量技术,2025,48(12):183-195

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-28
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告