采用改进Transformer模型的滚动轴承声振信号故障诊断方法
DOI:
CSTR:
作者:
作者单位:

云南农业大学机电工程学院 昆明 650201

作者简介:

通讯作者:

中图分类号:

TN911;TN98

基金项目:

云南省重大科技专项计划项目(202302AE090020)、云南省农业基础研究联合专项(202401BD070001-069)、云南省先进装备智能制造技术重点实验室开放基金课题(KLYAEIMTY2022004)项目资助


Fault diagnosis of rolling bearing acoustic and vibration signals using an improved Transformer
Author:
Affiliation:

Faculty of Mechanical and Electrical Engineering, Yunnan Agriculture University,Kunming 650201, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有故障诊断方法多采用“单信号单模型”的专用架构,对不同传感信号需构建独立的诊断模型。这类方法在实际应用中存在模型泛化能力有限、跨信号类型适应性不足等问题。因此,本文提出了一种通过构建统一的深度网络诊断模型,来实现能同时适用于振动与声学信号的智能诊断方法。首先,该方法采用改进淘金热优化算法和包络熵适应度函数来优化变分模态分解,实现变分模态分解中本征模态分量个数k和惩罚因子α自适应确定,再以平均峭度准则筛选变分模态分解分解后的本征模态分量,并使用改进的小波阈值去噪进行二次降噪和重构,以凸显声振信号中的故障特征。然后,在Transformer模型的基础上引入深度残差收缩网络,构建局部特征提取层,提高模型的局部特征提取能力;同时,设计了一种多尺度线性注意力机制来替换Transformer中的多头自注意力,降低模型计算复杂度,增强模型对长距离依赖的捕捉能力。最后,在自建的滚动轴承声振数据集上进行验证,实验结果表明,该方法在自建滚动轴承数据集上表现优异,对声学信号的诊断精度可达到90%,对振动信号的诊断精度达到了99.77%,均优于ResNet18、DRSN、VIT、MCSwin_T、WDCNN。

    Abstract:

    Existing fault diagnosis methods predominantly adopt a “single signalsingle model” dedicated architecture, requiring independent diagnostic models for different sensing signals. Such approaches face practical limitations including limited model generalization capability and insufficient adaptability across signal types. To address these issues, this paper proposes an intelligent diagnostic method based on a unified deep network model applicable to both vibration and acoustic signals. First, the method utilizes an improved gold rush optimizer algorithm and envelope entropy fitness function to optimize variational mode decomposition (VMD), enabling adaptive determination of the intrinsic mode function (IMF) decomposition number k and penalty factor α. Subsequently, the average kurtosis criterion is employed to screen VMD-decomposed IMF components, followed by secondary denoising and reconstruction using improved wavelet threshold denoising to enhance fault features in acoustic-vibration signals. Then, building upon the Transformer architecture, a deep residual shrinkage network is introduced to construct local feature extraction layers, thereby improving the model′s capability in local feature extraction. Concurrently, a multi-scale linear attention mechanism is designed to replace the multi-head self-attention in Transformer, reducing computational complexity while strengthening the model′s ability to capture long-range dependencies. Finally, experimental validation on a self-constructed rolling bearing acoustic-vibration dataset demonstrates the superiority of the proposed method, achieving 90% diagnostic accuracy for acoustic signals and 99.77% for vibration signals, outperforming comparative models including ResNet18, DRSN, ViT, MCSwin_T and WDCNN.

    参考文献
    相似文献
    引证文献
引用本文

施杰,张威,李志,陈立畅,杨琳琳.采用改进Transformer模型的滚动轴承声振信号故障诊断方法[J].电子测量技术,2025,48(11):105-116

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码