基于改进RT-DETR的织物疵点检测方法
DOI:
CSTR:
作者:
作者单位:

1.武汉纺织大学计算机与人工智能学院 武汉 430200;2.湖北省服装信息化工程技术研究中心 武汉 430200; 3.纺织服装智能化湖北省工程研究中心 武汉 430200

作者简介:

通讯作者:

中图分类号:

TN38

基金项目:

湖北省教育厅科学研究计划重点项目(D20211701)资助


Fabric defect detection method based on improved RT-DETR
Author:
Affiliation:

1.School of Computer Science and Artificial Intelligence,Wuhan Textile University,Wuhan 430200,China; 2.Engineering Research Center of Hubei Province for Clothing Information,Wuhan 430200,China; 3.Hubei Engineering Research Center of Intelligent Textile and Fashion,Wuhan 430200,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对织物疵点种类有限、尺度变化大以及模型检测精度低等问题,提出了一种基于RT-DETR的织物疵点检测方法DHR-DETR。首先,创新性地设计了多路径坐标注意力机制模块(MPCA),并将其与可变形卷积模块(DCNv2)深度融合,构建动态可变形卷积模块,以应对复杂多样的疵点形状。其次,采用高水平筛选特征金字塔(HS-FPN)替换跨尺度特征融合模块(CCFM),实现多层次特征的高效融合并有效降低了模型复杂度。最后,构建了兼具轻量化和特征增强能力的RetBlockC3模块,并集成至HS-FPN网络,进一步强化模型对局部信息的捕捉能力,同时显著提升模型的轻量化性能。试验结果表明,DHR-DETR方法在公开和自制织物数据集上的mAP@0.5分别达到了50.9%和97.5%,相较原模型提高了2.9%和0.6%,参数量仅为17.9 M,计算量降低了37%,显著提升了模型的检测性能和部署效率,具备在实际工业检测任务中的应用潜力。

    Abstract:

    To address the challenges of limited fabric defect categories, significant scale variations, and low detection accuracy in existing models, this study introduces DHR-DETR, a fabric defect detection method based on RT-DETR. Firstly, a Multi-Path Coordinate Attention(MPCA) module is innovatively designed and deeply integrated with the Deformable Convolution Module(DCNv2) to construct a Dynamic Deformable Convolution Module. This integration effectively accommodates the diverse and complex shapes of fabric defects. Secondly, a High-Level Screening Feature Pyramid Network(HS-FPN) is employed to replace the Cross-Scale Feature Fusion Module(CCFM), enabling efficient multi-level feature fusion while significantly reducing model complexity. Finally, a lightweight yet feature-enhancing RetBlockC3 module is developed and incorporated into the HS-FPN network. This module enhances the model′s capability to capture local information and further improves its lightweight design.Experimental evaluations demonstrate that the proposed DHR-DETR method achieves mAP@0.5 scores of 50.9% and 97.5% on public and custom fabric datasets, respectively, reflecting improvements of 2.9% and 0.6% compared to the baseline model. Additionally, the parameter count is reduced to just 17.9 M, with a 37% decrease in computational complexity. These results indicate substantial improvements in detection performance and deployment efficiency, showcasing the potential of DHR-DETR for practical applications in industrial fabric inspection tasks.

    参考文献
    相似文献
    引证文献
引用本文

李敏,周双,朱萍,崔树芹,颜小运.基于改进RT-DETR的织物疵点检测方法[J].电子测量技术,2025,48(14):176-184

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-04
  • 出版日期:
文章二维码