基于边界特征与多尺度特征的车辆目标检测
DOI:
CSTR:
作者:
作者单位:

1.新疆大学电气工程学院 乌鲁木齐 830017;2.大连理工大学控制科学与工程学院 大连 116024

作者简介:

通讯作者:

中图分类号:

TP391;TN919.8

基金项目:

辽宁省自然科学基金计划项目(2023-MS-093)、国家自然科学基金项目(62173055)、山西省科技重大专项揭榜项目(20191101014)、新疆维吾尔自治区重大科技专项项目(2023A01005-1)资助


Vehicle detection based on boundary and multi-scale feature
Author:
Affiliation:

1.School of Electrical Engineering, Xinjiang University,Urumqi 830017,China; 2.School of Control Science and Engineering, Dalian University of Technology,Dalian 116024,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    车辆目标检测技术在智能驾驶、智能交通和公共安全领域中具有重要意义。然而,真实环境中存在背景干扰、小目标检测难度大以及车辆密集时出现相互遮挡的问题。针对以上问题,提出一种基于边界特征与多尺度特征融合改进YOLOv8的车辆目标检测方法EM-YOLO。首先,设计了一种边界引导的多尺度特征块,以结合边界特征与多尺度特征,用于改进原始的骨干网络,增强抑制背景干扰的能力。其次,特征在网络流动的过程中会出现细节信息的损失,而小目标车辆能够提取到的有效特征较少,加重了细节信息的损失。为此提出细节特征增强块,通过充分结合不同层级的特征,缓解细节信息的损失,进而改善小目标问题。随后,分析了车辆相互遮挡导致检测性能下降的原因,并针对此问题提出了一种检测头。最后,结合PIoU、Focaler-IoU和WIoU,构造了WPF-IoU,以优化训练过程,进而提升检测性能。经实验验证,改进后模型的精度和召回率相比原始模型分别提升了1.9%和4.1%,mAP50和mAP50∶95分别提升了4.4%和3.3%。与其他方法相比,本文提出的方法在各项性能指标上表现更优,具有一定的实际应用价值。

    Abstract:

    Vehicle target detection is crucial for intelligent driving, intelligent transportation, and public safety. However, challenges like background interference, small targets, and vehicle occlusion in dense traffic affect detection accuracy. For these problems, we propose EM-YOLO, which improves YOLOv8 by fusing boundary features and multi-scale features. First, we design a boundary-guided multi-scale feature block. It combines boundary and multi-scale features to improve the backbone network and enhance its ability to suppress background interference. Second, features lose details information as they flow through the network. Small vehicles extract fewer effective features, which worsens this issue. we propose a feature enhancement block that combines features from different layers to reduce detail loss and improve small target detection. Then, we analyze the performance drop caused by occlusion in dense vehicles and propose a detection head to address this issue. Finally, WPFIoU is constructed by combining PIoU, Focaler-IoU, and WIoU. It optimizes the training process and improves detection performance. Experimental results show that the improved model achieved a 1.9% increase in precision and a 4.1% increase in recall compared to the original model. The mAP50 and mAP50∶95 improved by 4.4% and 3.3%. Compared with other advanced methods, the proposed method outperforms in all performance metrics and has significant practical application value.

    参考文献
    相似文献
    引证文献
引用本文

李天林,安毅,陈岩.基于边界特征与多尺度特征的车辆目标检测[J].电子测量技术,2025,48(16):158-171

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告