基于SAFPN-YOLO的风机表面缺陷检测方法
DOI:
CSTR:
作者:
作者单位:

江苏师范大学电气工程及自动化学院 徐州 221116

作者简介:

通讯作者:

中图分类号:

TP391.4;TN957.52

基金项目:

国家自然科学基金(61801197)、徐州市科技计划项目(KC22290)、江苏省高等学校自然科学基金(2024XKT0347)项目资助


Surface defect detection method for wind turbine based on SAFPN-YOLO
Author:
Affiliation:

School of Electrical Engineering and Automation, Jiangsu Normal University,Xuzhou 221116, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统检测方法对风力发电机表面缺陷检测能力不足的问题,本文提出一种基于SAFPNYOLO的风机表面缺陷检测算法。首先,针对航拍目标多尺度的问题,使用基于渐近融合思想的SAFPN网络替代了经典的特征金字塔融合网络,减小特征融合时信息的语义差距;其次,为了应对检测背景信息冗余的问题,在算法主干网络的深层嵌入改进的卷积模块替换原有的SCDown模块,使得模型保留对局部特征关键信息的同时,在更广阔的视野范围内提取特征;最后,为了解决纹理型缺陷难以检测与定位的问题,提出了一种可以加强空间特征交互能力和特征表达能力的注意力机制,进一步改善模型的检测性能。实验结果表明,基于SAFPN-YOLO的风机表面缺陷检测算法的mAP50达到了82.4%,相较于基线模型提高了3.3%,能够实现更加准确的风机表面缺陷检测。

    Abstract:

    In order to solve the problem that traditional detection methods cannot detect surface defects of wind turbines sufficiently, the paper proposes a surface defect detection algorithm for wind turbines based on SAFPN-YOLO. Firstly, in order to solve the problem of difficulty in multi-scale object detection, the SAFPN network based on the idea of asymptotic fusion is used to replace the classical feature pyramid fusion network, so as to reduce the semantic gap of information during feature fusion. Secondly, in order to solve the problem of redundancy of background information, the original SCDown module was replaced by the NAMBlock module embedded in the deep embedding of the algorithm backbone network, so that the model could extract features in a broader field of view while retaining the key information of local features. Finally, in order to solve the problem that textured defects are difficult to detect and locate, an attention mechanism is proposed to strengthen the spatial feature interaction ability and feature expression ability, and further improve the detection performance of the model. The experimental results show that the mAP50 based on SAFPN-YOLO fan surface defect detection algorithm reaches 82.4%, which is 3.3% higher than that of the baseline model, and can achieve more accurate defect detection on the surface of the fan.

    参考文献
    相似文献
    引证文献
引用本文

金鑫,井瑞,蒋宜辰.基于SAFPN-YOLO的风机表面缺陷检测方法[J].电子测量技术,2025,48(15):168-176

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-29
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告