基于改进UNet3+的露天矿无人机影像阴影提取
DOI:
CSTR:
作者:
作者单位:

太原理工大学地球科学与测绘工程学院 太原 030024

作者简介:

通讯作者:

中图分类号:

TN919.8;TP751

基金项目:

国家自然科学基金(U21A20107)、山西省基础研究计划面上项目(202203021211156)资助


Shadow extraction from UAV imagery of open-pit mines based on improved UNet3+
Author:
Affiliation:

College of Geological and Surveying Engineering, Taiyuan University of Technology,Taiyuan 030024, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用无人机技术获取露天矿区地表正射影像图可以快速有效的实现对矿区地表形态的全面监测与分析。然而,阴影在露天矿无人机正射影像图中普遍存在,既干扰了部分地物信息的获取、还降低了无人机影像的解译和识别精度。针对目前矿区阴影提取的研究较少,现有方法不能满足露天矿阴影识别的需求,同时也未建立露天矿区阴影数据集等问题,首次采用人工标注的方法构建一组露天矿区无人机正射影像阴影数据集。模型基于UNet3+,提出了一种结合混合注意力机制(CBAM)与深度可分离卷积层(DSC)的阴影提取方法。通过引入ResNet特征提取器,对原始影像进行五个尺度上的特征提取,根据提取到的特征进行全尺度跳跃连接实现特征融合,并引入CBAM注意力机制,以增强有用的特征,最终通过深度监督机制及解码器恢复的特征图预测每个像素的类别。对比4种典型的目标提取网络FCN、UNet、UNet++、UNet3+。结果表明,所提方法与Unet3+网络相比,在mPrecision、mRecall、mF1和mIoU四个指标上分别提升了4.9%、0.44%、2.24%、4.51%。在AISD公开数据上对比多种已有的阴影提取方法,结果表明,所提方法与残差监督网络相比,F1与IoU提高了0.27%、2.62%,证明该方法在阴影提取方面具有准确性,适合应用于露天矿区无人机影像中阴影提取。

    Abstract:

    Acquiring surface orthophoto image by UAV technology can quickly and effectively realize the comprehensive monitoring and analysis of mining surface morphology. However, shadows are prevalent in the open-pit mine UAV orthophoto image, which not only interferes with the acquisition of some ground object information, but also reduces the interpretation and recognition accuracy of UAV images. There are few researches on shadow extraction in mining area at present. Existing methods can not meet the needs of shadow identification in open pit mines. And the problems of not establishing shadow data set in opencast mining area, a UAV ortho image shadow dataset is constructed by using manual annotation for the first time. Based on the UNet3+model, a shadow extraction method combining mixed attention mechanism (CBAM) and depth separable convolution layer (DSC) is proposed. By introducing the ResNet feature extractor, feature extraction on five scales is carried out on the original image, and performs full-scale jump connection according to the extracted features to carry out feature fusion. And introduce CBAM attention mechanisms to enhance useful features. The category of each pixel is predicted by the feature map recovered by the deep monitoring mechanism and the decoder. Finally, proposed method is compared with four typical target extraction networks FCN, UNet, UNet++and UNet3. The experimental results show that, compared with Unet3+network, the mPrecision, mRecall, mF1 and mIoU improved by 4.9%, 0.44%, 2.24% and 4.51%, respectively. Proposed method was compared with a variety of existing shadow extraction methods on AISD public data. The experimental results showed that compared with residual supervision network, F1 and IoU improved by 0.27% and 2.62%. It is proved that this method is accurate in shadow extraction, and is suitable for shadow extraction in open pit mining area.

    参考文献
    相似文献
    引证文献
引用本文

杜孙稳,宋瑞婷,高志宇,史淼,张浩然.基于改进UNet3+的露天矿无人机影像阴影提取[J].电子测量技术,2025,48(13):73-83

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告