DenseNet特征分组深度孤立森林图像异常检测
DOI:
CSTR:
作者:
作者单位:

1.贵州民族大学数据科学与信息工程学院 贵阳 550025;2.贵州民族大学工程技术人才实践训练中心 贵阳 550025

作者简介:

通讯作者:

中图分类号:

TN014

基金项目:

国家自然科学基金(62062024)、贵州省模式识别与智能系统重点实验室2022年度开放课题(GZMUKL[2022]KF03)、贵州省教育厅自然科学研究项目(黔教技[2022]015)资助


DenseNet feature grouping deep isolated forest for image anomaly detection
Author:
Affiliation:

1.School of Data Science and Information Engineering, Guizhou Minzu University,Guiyang 550025, China; 2.Engineering Training Center, Guizhou Minzu University,Guiyang 550025, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了拓宽深度孤立森林(DIF)算法的应用领域。本文将深度学习预训练DenseNet121模型和DIF算法相结合,提出了一种DenseNet深度孤立森林(DDIF)算法用于探索该方法在工业图像异常检测数据集MVTec AD上的应用效果。但是经DenseNet-121模型特征提取后特征向量维度相当高,在随机选择数据属性构建树时可能存在数据集中某些重要特征属性无法被选中的问题,因此本文又提出一种基于特征分组深度孤立森林(GDIF)算法并用在表格型数据集上。最后,在DDIF算法的基础上结合GDIF算法得到DenseNet特征分组深度孤立森林算法(DGDIF),解决了高维数据重要特征漏选问题。实验选取不同的数据集进行异常检测,发现DDIF方法在15个图像数据集中有9个优于其他基于深度学习的方法;GDIF方法在9个表格数据集中较其他传统经典的异常检测算法表现出更优的AUROC值;DGDIF方法在15个图像数据集中有9个优于不引用特征分组的DDIF方法。实验结果验证了所提出的GDIF算法,DDIF算法和DGDIF算法的有效性。

    Abstract:

    In order to broaden the application field of Deep Isolation Forest (DIF) algorithm. we combine the deep learning pre-training DenseNet-121 model and DIF algorithm, and proposes a DenseNet Deep Isolation Forest (DDIF) algorithm for exploring the effectiveness of the method on the industrial image anomaly detection dataset MVTec AD. However, the dimension of feature vector after feature extraction by DenseNet-121 model is quite high, and there may be the problem that some important feature attributes in the dataset cannot be selected when randomly selecting data attributes to construct the tree, so we also propose a Group Deep Isolation Forest (GDIF) algorithm and applies it to tabular datasets. Finally, based on the DDIF algorithm and combined with the GDIF algorithm, the DenseNet Group Deep Isolation Forest (DGDIF) algorithm is obtained, which solves the problem of missing important features in high-dimensional data. Different datasets were selected for anomaly detection, and it was found that the DDIF method outperforms other deep learning-based methods in 9 out of 15 image datasets; the GDIF method showed better AUROC values than other traditional classical anomaly detection algorithms in the 9 tabular datasets; and the DGDIF method outperforms the DGDIF method in 15 image datasets by 9 outperforms the DDIF method without referencing feature grouping. The experimental results validate the effectiveness of the proposed GDIF algorithm, DDIF algorithm and DGDIF algorithm.

    参考文献
    相似文献
    引证文献
引用本文

周训会,黄成泉,肖洪湖,董红来. DenseNet特征分组深度孤立森林图像异常检测[J].电子测量技术,2025,48(15):63-69

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-29
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告