改进YOLOv8的煤矿井下低照度图像钻杆计数方法
DOI:
CSTR:
作者:
作者单位:

西安科技大学计算机科学与技术学院 西安 710054

作者简介:

通讯作者:

中图分类号:

TP391.41;TN911.73

基金项目:

国家自然科学基金青年项目 (62303375)资助


Improved YOLOv8 method for counting drill rods in low-light images in coal mines
Author:
Affiliation:

College of Computer Science and Technology, Xi′an University of Science and Technology, Xi′an 710054, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的煤矿井下钻杆计数方法在低照度环境下统计精度低且性能下降等问题,提出一种基于改进YOLOv8的煤矿井下低照度图像钻杆计数方法。该方法通过检测钻机卡盘与夹持器两个预测框的中心点坐标,绘制间距曲线并统计波峰的数值实现钻杆数量的计算。首先,采用SCI模块对低照度图像进行前置处理,解决低照度图像光照不均、对比度低等问题,确保后续模型能够提取到更多有效特征信息;其次,在主干网络中将EMA注意力机制融合到C2f模块,保留各通道的信息并建立长短期长下文依赖关系,增强对低照度、复杂背景中目标关注程度;此外,在颈部网络使用BiFPN结构作为特征融合方式以降低特征信息丢失,增强网络特征融合能力,提高模型在低照度场景下的检测精度;最后,设计了Inner-CIoU损失函数,基于不同大小的辅助边界框回归,提升模型对低照度和噪声的适应能力。实验结果表明,改进后的YOLOv8-GC算法mAP@0.5提升了5.7%,检测速度达到151 fps;低照度环境下钻杆计数精度达97.2%,充分证明了本文改进算法的有效性和应用潜力。

    Abstract:

    Aiming at the issues of low statistical accuracy and performance degradation of existing coal mine underground drill pipe counting methods in low-light environments, this paper proposes a low-light image drill pipe counting method for coal mine underground based on improved YOLOv8. This method calculates the number of drill pipes by detecting the center point coordinates of the two prediction boxes of the drill chuck and the holder, drawing the spacing curve, and counting the peaks. Firstly, the SCI module is used for pre-processing low-light images to address issues such as uneven illumination and low contrast, ensuring that the subsequent model can extract more effective feature information. Secondly, the EMA attention mechanism is integrated into the C2f module in the backbone network to retain information from each channel and establish long- and short-term context dependencies, enhancing the focus on targets in low-light and complex backgrounds. Additionally, the BiFPN structure is used as the feature fusion method in the neck network to reduce feature information loss and enhance the network′s feature fusion capability, improving the detection accuracy of the model in low-light scenarios. Finally, the Inner-CIoU loss function is designed, based on auxiliary bounding box regression of different sizes, to enhance the model′s adaptability to low-light and noise. Experimental results show that the improved YOLOv8-GC algorithm achieves a 5.7% increase in mAP@0.5, with a detection speed of 151 fps; the drill pipe counting accuracy in low-light environments reaches 97.2%, fully demonstrating the effectiveness and application potential of the proposed improved algorithm.

    参考文献
    相似文献
    引证文献
引用本文

冉庆庆,董立红,温乃宁.改进YOLOv8的煤矿井下低照度图像钻杆计数方法[J].电子测量技术,2025,48(11):155-165

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码