基于多输入融合的自适应水下图像增强模型
DOI:
CSTR:
作者:
作者单位:

沈阳建筑大学电气与控制工程学院 沈阳 110168

作者简介:

通讯作者:

中图分类号:

TN911.73;TP391.41

基金项目:

国家自然科学基金(62273243)项目资助


Adaptive underwater image enhancement model based on multiple input fusion
Author:
Affiliation:

College of Electrical and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对水下复杂环境中常见的低光照、颜色失真和模糊等图像退化问题,本文提出了一种基于多输入融合的图像增强模型。首先,通过融合白平衡处理的标准水下输入图像和对比度增强的降噪输入图像,利用图像退化信息,仅依赖原始图像生成相应的权重,有效应对水下介质带来的限制性影响。然后设计了4种权重图,针对光散射和吸收导致的远处物体能见度下降问题进行优化,优化图像的整体视觉质量和细节表现力。最后,通过多尺度融合过程,模型在不同尺度上逐层融合特征,减少伪影并增强图像细节。实验结果表明,所提模型在UIEB、EUVP和RUIE数据集上,UCIQE、UIQM和信息熵的平均值分别为0.660 3、4.556 9、7.434 1,与其他典型及新颖算法相比,所提模型在色彩失真校正、丰富细节缺失、对比度增强、主观视觉判断方面均表现优异,验证了该方法在水下图像增强中的优越性和鲁棒性。

    Abstract:

    In response to common image degradation issues in underwater complex environments, such as low light, color distortion, and blurring, this paper proposes an image enhancement model based on multi-input fusion. First, by combining a standard underwater input image with white balance processing and a denoised input image with contrast enhancement, the model generates corresponding weights by utilizing image degradation information and relying solely on the original image to effectively address the restrictive effects of the underwater medium. Four types of weight maps are then designed to optimize the visibility of distant objects, which is affected by light scattering and absorption, thus improving the overall visual quality and detail representation of the image. Finally, through a multi-scale fusion process, the model progressively merges features at different scales, reducing artifacts and enhancing image details. Experimental results show that the proposed model achieves average values of 0.660 3 for UCIQE, 4.556 9 for UIQM, and 7.434 1 for information entropy on the UIEB, EUVP, and RUIE datasets. Compared with other typical and novel algorithms, the proposed model outperforms in color distortion correction, detail enrichment, contrast enhancement, and subjective visual judgment, validating its superiority and robustness in underwater image enhancement.

    参考文献
    相似文献
    引证文献
引用本文

黎克迅,高治军,刘健勇,张萌,张稳舟.基于多输入融合的自适应水下图像增强模型[J].电子测量技术,2025,48(15):177-184

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-29
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告