基于拉普拉斯金字塔的特征融合深度估计算法
DOI:
CSTR:
作者:
作者单位:

北京理工大学集成电路与电子学院 北京 100081

作者简介:

通讯作者:

中图分类号:

TP391.4;TN919.8

基金项目:


The feature fusion depth estimation algorithm based on Laplacian pyramid
Author:
Affiliation:

School of Integrated Circuits and Electronics, Beijing Institute of Technology,Beijing 100081, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在计算机视觉领域,单目深度估计在自动驾驶、场景重建等应用中的重要性引起了广泛的关注。然而,现有的自监督单目深度估计方法未能充分利用底层特征,导致了物体轮廓深度估计效果较差。为了解决这一问题,本文提出了一种多尺度特征融合解码方法,将原始RGB图像逐步高斯下采样以获得各级特征图,然后对其分别进行高斯上采样,利用上/下采样过程中相同尺寸的特征图对构建拉普拉斯金字塔,在解码时从各个尺度将下采样过程中丢失的轮廓线索与编码器提取到的特征相融合,从而引导解码器生成更精确的深度图,最大限度地提升编码器底层特征的利用效率。该方法与基线方法Monodepth2在KITTI数据集上的实验结果相比,绝对相对误差Abs Rel降低了1.69%,平方相对误差Sq Rel降低了6.80%,均方根误差RMSE降低了1.00%,表明该方法对全局深度估计精度有所提升,此外可视化分析也验证了该方法对物体轮廓的深度估计效果有明显改善。

    Abstract:

    In the field of computer vision, monocular depth estimation has garnered significant attention due to its importance in applications such as autonomous driving and scene reconstruction. However, existing self-supervised monocular depth estimation methods fail to fully exploit low-level features, resulting in poor depth estimation performance for object contours. To address this issue, this paper proposed a multi-scale feature fusion decoding method. The original RGB image is progressively downsampled using a Gaussian approach to obtain feature maps at various levels, which are then upsampled using Gaussian processes. During upsampling and downsampling, Laplacian pyramids are constructed using feature maps of the same dimensions. During decoding, the lost contour cues from downsampling are fused with the features extracted by the encoder at each scale, guiding the decoder to generate more accurate depth maps and maximizing the utilization of low-level features from the encoder. Compared with the experimental results of the baseline method Monodepth2 on the KITTI dataset, this method reduced the absolute relative error Abs Rel by 1.69%, the squared relative error Sq Rel by 6.80%, and the root mean square error RMSE by 1.00%, indicating that this method has improved the accuracy of global depth estimation, and the visual analysis also verified that the method has significantly improved in the depth estimation effect of object contours.

    参考文献
    相似文献
    引证文献
引用本文

李铭汇,范哲意,朱艺璇.基于拉普拉斯金字塔的特征融合深度估计算法[J].电子测量技术,2025,48(13):183-188

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告