基于PCA和非线性映射改进的MFCC特征提取方法
DOI:
CSTR:
作者:
作者单位:

1.中国科学院上海微系统与信息技术研究所微系统技术重点实验室 上海 201800;2.中国科学院大学 北京 100049

作者简介:

通讯作者:

中图分类号:

TN911.7

基金项目:

微系统重点实验室基金课题(6142804230101)项目资助


Improved MFCC feature extraction method based on PCA and nonlinear mapping
Author:
Affiliation:

1.Science and Technology on Microsystem Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences,Shanghai 201800, China;2.University of Chinese Academy of Sciences,Beijing 100049, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    使用传统的梅尔倒谱系数(MFCC)作为特征进行野外目标识别时,由于MFCC对环境干扰较敏感,所以会导致识别率的下降。针对这个问题,提出了使用主成分分析法(PCA)代替MFCC提取过程中使用的离散余弦变换,并且使用非线性函数对梅尔滤波后所获得的对数能量进行映射。改进后的MFCC更贴合实际数据、可以增强目标信号所在频段的权重、有着良好的可分性和鲁棒性。经过实验验证,使用PCA和非线性映射改进后的MFCC作为分类特征时,准确率为93.36%,优于传统的MFCC。

    Abstract:

    When using traditional Mel-frequency cepstral coefficients (MFCC) as features for target recognition in wild filed environments, their sensitivity to environmental interference often leads to a decline in recognition accuracy. To address this issue, this study proposes replacing the discrete cosine transform used in the MFCC extraction process with principal component analysis (PCA) and applying a nonlinear function to map the logarithmic energy obtained after Mel filtering. The improved MFCC are more aligned with actual data, can enhance the weighting of frequency bands containing the target′s signal, and have better separability and robustness. Experimental results show that using the improved MFCC based on PCA and nonlinear mapping as classification features achieves an accuracy of 93.36%, surpassing the performance of traditional MFCC.

    参考文献
    相似文献
    引证文献
引用本文

符恬恬,郑斌琪,李成娟,夏利杰.基于PCA和非线性映射改进的MFCC特征提取方法[J].电子测量技术,2025,48(10):93-99

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告