考虑多特征的英语篇章关系分析识别方法
DOI:
CSTR:
作者:
作者单位:

1.山西医科大学汾阳学院 吕梁 032200;2.北京理工大学国际交流合作处 北京 100086;3.太原理工大学计算机 科学与技术学院(大数据学院) 晋中 030600

作者简介:

通讯作者:

中图分类号:

TP183;TN99

基金项目:

2024年山西省高等学校一般性教学改革创新立项项目(J20241693)资助


English discourse structure analysis recognition method considering multiple features
Author:
Affiliation:

1.Fenyang College, Shanxi Medical University,Lyuliang 032200, China;2.International Student Center, Beijing Institute of Technology,Beijing 100086, China;3.College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology,Jinzhong 030600, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决篇章级关系分析识别领域中存在多实体多匹配类别、上下文关系信息复杂等缺陷,本文提出一种融合实体特征信息和上下文特征信息的考虑多特征的英语篇章关系分析识别方法。首先,提出考虑多特征的关系分析识别框架。然后,对其中实体识别单元和上下文关系识别单元的机制进行详细介绍。最后,通过公开数据集和自选数据集进行对比实验和消融实验,验证并分析本文模型的优越性,并对模型识别效率以及相关参数的影响进行实验和分析。在2个数据集上,本文所提方法在F1和IgnF1两个指标上均能保持最优性能,较其他次优识别模型在F1指标上分别提升1.65%和1.13%,在IgnF1指标上分别提升2.78%和1.58%。实验表明:本文所提模型能够提取出表征篇章关系的关键特征信息,帮助理解篇章脉络以及各部分之间的关系,把握文章整体结构。

    Abstract:

    In order to solve the problems of multi-entity and multi-matching categories and complex context information in the field of discourse level relation analysis and recognition, this paper proposes an English discourse structure analysis and recognition method considering multifeatures by fusing entity feature information and context feature information. Firstly, a structural analysis and recognition framework considering multiple features is proposed. Then, the mechanisms of entity recognition unit and context relation recognition unit are introduced in detail. Finally, comparative experiments and ablation experiments are carried out through public datasets and self-selected datasets to verify and analyze the superiority of the proposed model, and the recognition efficiency of the model and the influence of related parameters are experimented and analyzed. On the two datasets, the proposed method can maintain the optimal performance in both indicators F1 andIgnF1. Compared with other suboptimal recognition models, the proposed method improves 1.65% and 1.13% respectively on F1, 2.78% and 1.58% respectively onIgnF1. Experiments show that the proposed model can extract the key feature information representing the discourse relation, help to understand the context and the relationship between each part of the text, and grasp the overall structure of the text.

    参考文献
    相似文献
    引证文献
引用本文

张静,宗欣,郑渊.考虑多特征的英语篇章关系分析识别方法[J].电子测量技术,2025,48(13):120-128

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告