融合A*与DWA算法的移动机器人动态避障研究
DOI:
CSTR:
作者:
作者单位:

南昌航空大学航空制造与机械工程学院 南昌 330063

作者简介:

通讯作者:

中图分类号:

TP242;TN102

基金项目:

国家自然科学基金(NSFC52465030,NSFC52165008)项目资助


Research on mobile robot dynamic obstacle avoidance by fusing A* and DWA algorithms
Author:
Affiliation:

College of Aerospace Manufacturing and Mechanical Engineering, Nanchang Hangkong University,Nanchang 330063,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统A*算法在路径规划时存在搜索效率低、穿插障碍物、路径不平滑、无法规避未知障碍物等问题,提出了一种改进A*算法与改进DWA算法相融合的移动机器人动态避障方法。在改进A*算法中,引入全局障碍物占比率,在启发函数中增加动态权重系数,优化搜索领域,设定安全距离去除冗余节点,并加入三阶贝塞尔曲线对路径进行平滑处理,同时在DWA算法中加入目标点代价子函数,并动态调整代价函数系数,最后将改进A*算法与改进DWA算法进行融合,实现移动机器人的动态避障。仿真实验结果显示,在不同环境中,本文改进A*算法与传统A*算法以及其他改进A*算法相比,路径长度分别平均缩短了5.14%和1.01%,搜索节点分别减少了57.05%和36.59%,规划时间分别减少了34.39%和8.49%;本文改进融合算法与传统融合算法以及其他融合算法相比,路径长度分别平均缩短了19.89%和1.82%,规划时间分别平均减少了53.66%和13.01%。证明了本文所提出的改进融合算法有效缩短了规划的路径长度与时间,能够在复杂的动态环境下实现实时避障,满足移动机器人行驶过程中的高效性和安全性。

    Abstract:

    To solve the problems of low search efficiency, interspersed obstacles, unsmooth paths, and inability to avoid unknown obstacles in the traditional A* algorithm during path planning, a mobile robot dynamic obstacle avoidance method integrating the improved A* algorithm with the improved DWA algorithm is proposed. In the improved A* algorithm, the global obstacle occupancy ratio is introduced, dynamic weight coefficients are added to the heuristic function, the search field is optimized, the safe distance is set to remove redundant nodes, and third-order Bessel curves are added to smooth the paths, and the cost subfunctions of the target points are added to the DWA algorithm and the coefficients of the cost function are dynamically adjusted. The dynamic obstacle avoidance of the mobile robot is realized. Simulation results show that in different environments, compared with the traditional A* algorithm and other improved A* algorithms, the path length of the improved A* algorithm in this paper is shortened by an average of 5.14% and 1.01%, the search nodes are reduced by 57.05% and 36.59%, and the planning time is reduced by 34.39% and 8.49%, respectively; the improved fusion algorithm in this paper is reduced by an average of 5.14% and 1.01%, the search node is reduced by 57.05% and 36.59%, and the planning time is reduced by 34.39% and 8.49%, respectively. other fusion algorithms, the path length is shortened by 19.89% and 1.82% on average, and the planning time is reduced by 53.66% and 13.01% on average, respectively. It is proved that the improved fusion algorithm proposed in this paper effectively shortens the planned path length and time, and is able to realize real-time obstacle avoidance in complex dynamic environments to satisfy the high efficiency and safety of mobile robots during traveling.

    参考文献
    相似文献
    引证文献
引用本文

鲁志,刘莹煌,张绪坤,侯睿.融合A*与DWA算法的移动机器人动态避障研究[J].电子测量技术,2025,48(8):34-45

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-23
  • 出版日期:
文章二维码