基于YOLOv7的雾天实时目标检测方法
DOI:
CSTR:
作者:
作者单位:

长沙理工大学电气与信息工程学院 长沙 410114

作者简介:

通讯作者:

中图分类号:

TP391;TN911.73

基金项目:

国家自然科学基金面上项目(62271087)、湖南省自然科学基金(2024JJ5039,2023JJ60141)、湖南省教育厅科学研究重点项目(24A0243)资助


Real-time object detection based on YOLOv7 in foggy weather
Author:
Affiliation:

School of Electrical and Information Engineering,Changsha University of Science and Technology,Changsha 410114,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    雾天场景下,拍摄的图像模糊、细节信息缺失,目标与背景难以区分。针对现有深度学习目标检测算法易出现漏检、误检、识别速度慢等问题,提出一种基于YOLOv7的雾天实时检测算法。以YOLOv7为基线,在其前端设计包含AOD去雾子网络和雾天图像生成子网络的循环去雾双子网络。轻量化的AOD去雾子网络占用很少的计算资源,有效克服雾天对图像造成的负面影响,增强模型的特征提取能力;雾图像生成子网络在模型训练阶段协助提升AOD子网络的去雾性能,并在测试时不参与计算,显著减少推理时间。改进的图像重建损失函数引入模糊图像信息,并将整体网络统一训练有效地结合去雾和检测任务。将CityScapes数据集合成得到两个不同雾浓度的雾天图像数据集,在两个数据集上的实验结果表明,该方法的平均精确度分别为65.2%、64.2%,检测速度FPS为42.4,模型精度在所有对比方法中最优且能实现实时检测;最后将训练好的各模型在RTTS数据集上进验证,所设计的模型泛化能力超过其他方法。

    Abstract:

    In the foggy scene, the captured image is blurred, the detail information is missing, and the target and the background are difficult to distinguish. Aiming at the problems of missed detection, false detection and slow recognition speed of existing deep learning target detection algorithms, a real-time object detection algorithm based on YOLOv7 in foggy weather is proposed. Taking YOLOv7 as the baseline, a cyclic defogging double sub-network including AOD defogging sub-network and foggy image generation sub-network is designed at the front end. The lightweight AOD defogging sub-network takes up little computing resources, effectively overcomes the negative impact of foggy days on the image, and enhances the feature extraction ability of the model. The fog image generation sub-network improves the dehazing performance of the AOD sub-network in the model training stage, and does not participate in the calculation during the test, which significantly reduces the inference time. The improved image reconstruction loss function introduces blurred image information, and the overall network unified training effectively combines defogging and detection tasks. The CityScapes data set is integrated into two foggy image data sets with different fog concentrations. The experimental results on the two data sets show that the average accuracy of the method is 65.2 % and 64.2 %, and the detection speed FPS is 42.4. The model accuracy is the best among all the comparison methods and can achieve real-time detection. Finally, the trained models are verified on the RTTS dataset, and the generalization ability of the designed model is better than other methods.

    参考文献
    相似文献
    引证文献
引用本文

谢祖华,李海涛,胡建文.基于YOLOv7的雾天实时目标检测方法[J].电子测量技术,2025,48(11):147-154

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码