基于IHOA-DELM的锂离子电池SOH和RUL联合预测
DOI:
CSTR:
作者:
作者单位:

中北大学数学学院 太原 030051

作者简介:

通讯作者:

中图分类号:

TN-9

基金项目:


Joint prediction of SOH and RUL for lithium-ion batteries based on IHOA-DELM
Author:
Affiliation:

School of Mathematics, North University of China,Taiyuan 030051, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确预测锂离子电池的健康状态(SOH)和剩余使用寿命(RUL),对其安全稳定运行具有重要意义。本研究提出一种改进河马优化算法(IHOA)与深度极限学习机(DELM)相结合的新型算法。从锂电池充放电过程中提取了6个健康指标(HIs),通过Pearson相关分析保留了与容量相关性较高的5个HIs,接着用Hampel滤波去除特征数据中的异常值并归一化。最后建立电池SOH和RUL联和预测的DELM模型。此外,为了提高模型的预测效率,提出了IHOA对DELM的超参数进行优化。与传统的河马优化算法(HOA)相比,解决了传统河马算法在搜索效率、收敛速度和全局搜索等方面的局限性。基于CALCE锂电池数据集的实验仿真结果表明,IHOA-DELM算法的预测精度较高,SOH预测的RMSE值在1.21%~1.31%之间,MAE值在0.89%~0.95%之间,MAPE值在1.59%~1.93%之间;RUL预测的最大绝对误差(AE)值不超过3个周期,最小AE值只有1个周期。

    Abstract:

    Accurate prediction of the state of health (SOH) and remaining useful life (RUL) of lithium-ion batteries is of great significance for their safe and stable operation. In this paper, a novel Algorithm combining the improved hippopotamus optimization algorithm (IHOA) and deep extreme learning machine (DELM) is proposed. Six health indicators (HIs) were extracted from the charge and discharge process of lithium batteries, and the five HIs with high capacity correlation were retained by Pearson correlation analysis. Then, the outliers in the feature data were removed and normalized by Hampel filtering. Finally, the DELM model of SOH and RUL is established. In addition, In order to improve the prediction efficiency of the model, an IHOA is proposed to optimize the hyperparameters of DELM. Compared with the traditional hippopotamus optimization algorithm (HOA), it solves the limitations of the traditional hippopotamus algorithm in search efficiency, convergence speed and global search. The experimental simulation results based on CALCE lithium battery data set show that the prediction accuracy of IHOA-DELM algorithm is high, the root mean square error (RMSE) of SOH prediction of the proposed method ranges from 1.21%~1.31%, and the mean absolute error (MAE) value ranges from 0.89%~0.95%. The mean absolute percentage error (MAPE) was between 1.59%~1.93%. The maximum absolute error (AE) value predicted by RUL does not exceed 3 cycles, and the minimum absolute error value is only 1 cycle.

    参考文献
    相似文献
    引证文献
引用本文

曹旭,惠周利,杨明.基于IHOA-DELM的锂离子电池SOH和RUL联合预测[J].电子测量技术,2025,48(10):73-83

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告