基于数据增强的可解释旋转机械故障诊断
DOI:
CSTR:
作者:
作者单位:

东北林业大学机电工程学院 哈尔滨 150036

作者简介:

通讯作者:

中图分类号:

TH17; TN911.7

基金项目:

国家自然科学基金面上项目(31870537)资助


Interpretable rotating machinery fault diagnosis based on data enhancement
Author:
Affiliation:

College of Mechanical and Electrical Engineering, Northeast Forestry University,Harbin 150036,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决机械故障诊断中稀疏标签、数据不足等问题,同时提升诊断性能与模型可解释性,本文提出了一种嵌入时频分析的时频卷积神经网络(TF-CNN)模型。该模型结合多种高效数据增强方法与嵌入时频分析的卷积神经网络,从振动信号中提取多尺度关键时频特征。时频卷积层利用时频变换的物理可解释性与卷积神经网络的自主特征提取能力,精准捕捉信号关键信息,并通过分类器实现故障诊断。在CWRU数据集上的实验结果表明,TF-CNN模型的诊断准确率高达99.8%,显著优于基线方法。此外,频率响应分析验证了模型对信号关键频段的关注能力,进一步增强了诊断过程的物理可解释性。本文提出的TF-CNN模型充分结合时频分析与深度学习优势,提供了一种高效、精准且可解释的解决方案,为工业故障诊断领域带来了新思路与实践指导。

    Abstract:

    To address the challenges of sparse labels and insufficient data in mechanical fault diagnosis while enhancing diagnostic performance and model interpretability, this paper introduces a time-frequency convolutional neural network(TF-CNN) model embedded with time-frequency analysis. By integrating advanced data augmentation techniques with a convolutional architecture leveraging time-frequency transformation, the model effectively extracts multi-scale, key time-frequency features from vibration signals. The time-frequency convolutional layer combines the physical interpretability of time-frequency analysis with the autonomous feature extraction capabilities of convolutional neural networks, enabling precise identification of critical signal characteristics and fault diagnosis through classification mechanisms. Experimental validation on the CWRU dataset demonstrates that the TF-CNN model achieves a diagnostic accuracy of 99.8%, significantly outperforming baseline methods. Additionally, frequency response analysis confirms the model′s ability to emphasize key signal frequency bands, further strengthening its physical interpretability. By seamlessly integrating the strengths of time-frequency analysis and deep learning, the TF-CNN model offers an innovative, efficient, and interpretable approach to industrial fault diagnosis. This work provides valuable insights and practical guidance for advancing fault diagnosis techniques, paving the way for robust applications in complex industrial scenarios.

    参考文献
    相似文献
    引证文献
引用本文

张昊,王海茹,马继东.基于数据增强的可解释旋转机械故障诊断[J].电子测量技术,2025,48(8):105-115

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-23
  • 出版日期:
文章二维码