负载突变下矿用电机车永磁同步电机控制研究
DOI:
CSTR:
作者:
作者单位:

1.安徽理工大学煤炭无人化开采数智技术全国重点实验室 淮南 232001;2.安徽理工大学矿山智能技术与装备省部 共建协同创新中心 淮南 232001;3.安徽理工大学机电工程学院 淮南 232001

作者简介:

通讯作者:

中图分类号:

TM351;TN830

基金项目:

国家自然科学基金面上项目(52274152)、安徽省高校杰出青年科研项目(2022AH020056)、安徽省自然科学优秀青年科研基金(2308085Y37)项目资助


Research on permanent magnet synchronous motor control of mining locomotive under load mutation
Author:
Affiliation:

1.State Key Laboratory of Digital and Intelligent Technology for Unmanned Coal Mining, Anhui University of Science and Technology,Huainan 232001, China;2.Collaborative Innovation Center for Mining Intelligent Technology and Equipment, Anhui University of Science and Technology,Huainan 232001, China;3.School of Mechanical Engineering, Anhui University of Science and Technology,Huainan 232001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为针对煤矿电机车井下复杂工况导致的永磁同步电机控制抗干扰能力不足、系统精度差与收敛速度慢的问题,提出一种基于改进蜣螂鱼鹰算法的BP神经网络PID的智能控制方法。首先,将改进蜣螂算法与鱼鹰算法结合起来,设计一种改进蜣螂鱼鹰算法,鱼鹰算法的全局搜索策略替代蜣螂算法的滚球阶段;其次,再引入正弦学习因子提高算法勘探能力,动态螺旋搜索提高算法的全局搜索性能,自适应t分布扰动和分段函数方法跳出局部最优,提高解的质量。该算法对BP神经网络的学习因子和惯性因子进行优化,使得神经网络更加快速输出PID最佳参数;最后,添加电压前馈解耦来抵消永磁同步电机耦合项,提高永磁同步电机动态响应。通过Matlab/Simulink仿真和RTLAB半实物平台的实验,对改进蜣螂鱼鹰算法BP神经网络PID控制器与传统PID控制器进行对比分析,仿真结果表明:当负载转矩发生突变后,目标转速为1 200 r/min时,改进蜣螂-鱼鹰算法BP神经网络PID控制器相较于传统PID控制恢复时间以及超调量分别减少约98.3%、66%,实验结果表明:负载突增和转速突变时,相对于PID控制、PSO控制、BAS-PID控制,IDBO-OOA-PID转速控制转速波动更小、转速回到设定值时间更短、电流响应更平稳,验证了IDBO-OOA-PID转速控制器具有较好的抗干扰能力、稳定性、鲁棒性。

    Abstract:

    In order to solve the problems of insufficient anti-interference ability, poor system accuracy and slow convergence speed of permanent magnet synchronous motor control caused by complex underground working conditions of coal mine electric locomotive, an intelligent control method of BP neural network PID based on improved dung beetle-osprey algorithm was proposed. Firstly, the improved dung beetle algorithm and the osprey algorithm were combined to design an improved dung beetle-osprey algorithm, and the global search strategy of the osprey algorithm replaced the rolling ball stage of the dung beetle algorithm. Secondly, the sinusoidal learning factor is introduced to improve the exploration ability of the algorithm, the dynamic spiral search improves the global search performance of the algorithm, and the adaptive t-distribution perturbation and piecewise function methods jump out of the local optimal to improve the quality of the solution. The algorithm optimizes the learning factor and inertia factor of the BP neural network, so that the neural network can output the best PID parameters more quickly. Finally, the voltage feedforward decoupling is added to offset the coupling term of the permanent magnet synchronous motor and improve the dynamic response of the permanent magnet synchronous motor. Through Matlab/Simulink simulation and RT-LAB experiments on the semi-physical platform, the BP neural network PID controller of the improved dung beetle-osprey algorithm is compared with the traditional PID controller, and the results show that when the target speed is 1 200 r/min after the load torque is abrupt, the recovery time and overshoot of the improved dung beetle-osprey algorithm BP neural network PID controller are reduced by about 98.3% and 66%, respectively, compared with the traditional PID control.The experimental results show that compared with PID control, PSO control and BAS-PID control, the IDBO-OOA-PID speed control speed fluctuation is smaller, the speed return time to the set value is shorter, and the current response is more stable when the load burst and speed are abrupt.It is verified that the IDBO-OOA-PID speed controller has good anti-interference ability, stability and robustness.

    参考文献
    相似文献
    引证文献
引用本文

赵婷婷,王爽,杨宇豪,许谨辉,刘子强.负载突变下矿用电机车永磁同步电机控制研究[J].电子测量技术,2025,48(17):54-65

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告