基于RT-DETR的复杂果园环境下青橘检测方法
DOI:
CSTR:
作者:
作者单位:

1.桂林理工大学广西高校先进制造与自动化技术重点实验室 桂林 541006;2.桂林理工大学机械与控制工程 学院 桂林 541004;3.广西特色作物研究院广西桂北特色经济作物种质创新与利用重点实验室 桂林 541004

作者简介:

通讯作者:

中图分类号:

TP242; S225; TN919.8

基金项目:

国家自然科学基金(52465026)、国家现代农业产业技术体系广西创新团队(nycytxgxcxtd-2023-13-02)、广西自然科学基金(2021GXNSFAA220091)项目资助


Green citrus detection method in complex orchard environments based on RT-DETR
Author:
Affiliation:

1.Key Laboratory of Advanced Manufacturing and Automation Technology in Guangxi Universities,Guilin University of Technology,Guilin 541006, China;2.College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541004,China;3. Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    青橘智能收获依赖快速精准的检测技术。针对青橘尺寸多样、果园环境复杂及果实与背景相似度高导致的检测精度不足和漏检问题,本研究提出了一种轻量且高精度的青橘检测模型(RT-GCTR)。该模型采用大感受野小波卷积模块(WCLRF_Block)增强多尺寸目标特征提取,结合多尺度多头自注意力机制(MSMHSA)构建多尺度融合模块(MSMH-AIFI),自适应聚合多尺度特征,并引入SPDConv与CSP-OmniKernel模块设计SCOK-CCFF特征金字塔,提升小目标检测精度。实验结果表明,RT-GCTR在训练数据集1和测试数据集2上的AP50分别为92.0%和92.2%,优于其他先进模型。与RT-DETR-r18相比,RT-GCTR的参数量和浮点运算量分别减少26.7%和25.4%,在NVIDIA Jetson Orin NX上检测速度达10.3 fps。本研究在降低复杂度的同时,提升了精度和实时性,满足边缘设备需求。

    Abstract:

    The intelligent harvesting of green citrus relies on fast and accurate detection technology. To address the issues of insufficient detection accuracy and missed detection caused by the diverse sizes of green citrus, complex orchard environments, and high similarity between fruits and backgrounds, this study proposes a lightweight and high-precision green citrus detection model (RT-GCTR). The model employs a large receptive field wavelet convolution module (WCLRF_Block) to enhance multi-scale target feature extraction. It integrates a multi-scale multi-head self-attention mechanism (MSMHSA) to construct a multi-scale fusion module (MSMH-AIFI) for adaptive feature aggregation. Additionally, it introduces SPDConv and CSP-OmniKernel modules to design the SCOK-CCFF feature pyramid, improving small target detection accuracy. Experimental results show that RT-GCTR achieves AP50 scores of 92.0% and 92.2% on training dataset 1 and test dataset 2, respectively, outperforming other advanced models. Compared to RT-DETR-r18, it reduces parameters and computations by 26.7% and 25.4%, respectively, and achieves a detection speed of 10.3 fps on the NVIDIA Jetson Orin NX. This study improves accuracy and real-time performance while reducing complexity, making it suitable for edge device applications.

    参考文献
    相似文献
    引证文献
引用本文

秦建华,陈振伦,万保雄,陆泰良,雷军乐.基于RT-DETR的复杂果园环境下青橘检测方法[J].电子测量技术,2025,48(11):175-186

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码