基于SGF-YOLO的钢板缺陷检测方法
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学计算机学院 南京 210044; 2.无锡学院物联网工程学院 无锡 214105; 3.无锡学院江苏省外国专家工作室-无锡学院物联网工程学院外国专家工作室 无锡 214105

作者简介:

通讯作者:

中图分类号:

TP391;TN01

基金项目:

国家自然科学基金(62072216)、无锡学院引进人才科研启动专项经费(2023r005)项目资助


Steel defect detection method based on SGF-YOLO
Author:
Affiliation:

1.School of Computer Science,Nanjing University of Information Science & Technology,Nanjing 210044, China; 2.School of Internet of Things Engineering, Wuxi University, Wuxi 214105, China; 3.Jiangsu Provincial Foreign Experts Workshop-Foreign Experts Workshop of the School of Internet of Things Engineering, Wuxi University, Wuxi 214105, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    钢板产品的表面质量对其使用性能和市场竞争力具有重要影响。针对钢板表面缺陷检测精度不足导致的误检频发和漏检严重等问题,本文提出了一种基于YOLOv8n的改进模型SGF-YOLOv8n。首先,引入了Slim-neck结构,以有效减少模型的参数量和计算复杂度,从而提升计算效率。其次,集成GAM注意力机制以增强模型对全局特征的感知能力,从而提高了对细微缺陷的检测性能。最后,采用Focaler-IoU损失函数,进一步优化了模型在处理边界模糊及小尺寸缺陷区域时的定位精度。此外,针对数据集样本量有限问题,本文采用数据增强技术对NEU-DET数据集进行了样本扩充并展开实验。实验结果表明,SGF-YOLOv8n在NEU-DET数据集上的mAP50值达到81.6%,比基线模型提升3.8%。同时,在GC10-DET数据集上的泛化实验中,SGF-YOLOv8n的mAP50达到70.4%,较基线模型提升6.7%。结果表明,本文提出的改进算法具有良好的鲁棒性和有效性。

    Abstract:

    The surface quality of steel plate products significantly impacts their performance and market competitiveness. To address the challenges of insufficient detection accuracy, frequent false positives, and severe missed detections in steel plate surface defect detection, this paper proposes an improved model, SGF-YOLOv8n, based on YOLOv8n. First, a Slim-neck structure is introduced to effectively reduce the model′s parameter count and computational complexity, thereby enhancing computational efficiency. Second, the GAM attention mechanism is integrated to strengthen the model′s perception of global features, improving its ability to detect subtle defects. Finally, the Focaler-IoU loss function is employed to further optimize the model′s localization accuracy when dealing with blurry boundaries and small defect areas. Additionally, to address the issue of limited dataset samples, data augmentation techniques were applied to expand the NEU-DET dataset, followed by extensive experiments. The experimental results demonstrate that SGF-YOLOv8n achieves an mAP50 of 81.6% on the NEU-DET dataset, representing a 3.8% improvement over the baseline model. Furthermore, in generalization experiments on the GC10-DET dataset, SGF-YOLOv8n achieved an mAP50 of 70.4%, a 6.7% increase compared to the baseline. These results indicate that the proposed algorithm exhibits robust performance and high effectiveness.

    参考文献
    相似文献
    引证文献
引用本文

雷超,陈德基,孙家栋,施珮.基于SGF-YOLO的钢板缺陷检测方法[J].电子测量技术,2025,48(21):215-225

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-25
  • 出版日期:
文章二维码