基于LDF-YOLO的小目标检测方法
DOI:
CSTR:
作者:
作者单位:

1.中国石油大学华东海洋与空间信息学院 青岛 266580;2.中国石油大学华东控制科学与工程学院 青岛 266580

作者简介:

通讯作者:

中图分类号:

TP391.4;TN911.73

基金项目:

国家自然科学基金(62372468)、山东省重点基础研究项目(ZR2023ZD32)、山东省自然科学基金(ZR2023MF008)项目资助


Small object detection method based on LDF-YOLO
Author:
Affiliation:

1.College of Ocean and Space Information, China University of Petroleum East China,Qingdao 266580, China; 2.College of Control Science and Engineering, China University of Petroleum East China,Qingdao 266580, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    小目标检测是计算机视觉中极具挑战性的任务,现有的检测算法复杂度高、计算量大且检测精度低导致了漏检和误检的问题,本文针对小目标的独有特征提出了LDF-YOLO算法以提高检测精度并降低漏检率。首先是对Head部分的改进,在特征融合网络中引入了特征转换模块,设计了针对微小物体的检测头LP-Detect;其次,借鉴残差门控机制和局部特征增强机制设计了LR-C2f模块,增强模型提取局部特征的能力;最后,融入了局部特征增强模块,以强化骨干网络提取小目标信息的能力。在公开数据集Tiny Person上,LDF-YOLO比原YOLOv8在mAP0.5上提高了4.5%,召回率提高了5.5%,实验结果验证了改进方法的有效性,同时在NWPU VHR-10和VisDrone2019数据集上做了泛化对比实验,经实验表明各项指标均有提升。

    Abstract:

    Small target detection is an extremely challenging task in computer vision, where existing detection algorithms suffer from high complexity, large computational overhead, and low detection accuracy, leading to issues such as missed detections and false alarms. In this paper, the LDF-YOLO algorithm is proposed to enhance detection accuracy and decrease missed detection rates for small objects. Firstly, improvements are made to the Head section by introducing a feature transformation module in the feature fusion network and designing the LP-Detect detection head tailored for small objects. Secondly, drawing inspiration from residual gated mechanisms and local feature enhancement strategies, the LR-C2f module is devised to bolster the model′s capability in extracting local features. Finally, the local feature enhancement module is integrated to enhance backbone′s ability to extract information from small objects. On the publicly available Tiny Person dataset, LDF-YOLO outperforms the original YOLOv8 by achieving a 4.5% improvement in mAP0.5 and a 5.5% increase in recall. Experimental results validate the effectiveness of our proposed improvements. Furthermore, generalization comparison experiments on the NWPU VHR-10 and VisDrone2019 datasets demonstrate improvements across all metrics.

    参考文献
    相似文献
    引证文献
引用本文

刘洋,任旭虎,刘宝弟,刘伟锋.基于LDF-YOLO的小目标检测方法[J].电子测量技术,2025,48(12):156-165

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-28
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告