改进YOLOv10n的输电线路部件缺陷检测算法
DOI:
CSTR:
作者:
作者单位:

华北理工大学电气工程学院 唐山 063200

作者简介:

通讯作者:

中图分类号:

TP391.4;TN919.8

基金项目:

河北省自然科学基金(D2024209006)、河北省教育厅科学研究项目(QN2024147)资助


Improving the YOLOv10n algorithm for detecting defects in transmission line components
Author:
Affiliation:

School of Electrical Engineering, North China University of Science and Technology, Tangshan 063200, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对输电线路巡检图像中部件缺陷检测时易受背景环境干扰、缺陷目标尺度差异大,导致检测精度较低的问题,提出一种改进YOLOv10n的输电线路部件缺陷检测算法。首先,利用RepViTBlock和ELA注意力机制对C2f重新设计,构建ERC2f模块,抑制背景环境干扰,增强模型特征提取能力,并减少参数冗余;其次,结合动态上采样器DySample和注意力尺度序列融合模块ASF设计DASF颈部结构,提升模型的多尺度特征融合能力;再次,基于多样化分支块DBB提出重参化共享卷积检测头RSCD,通过共享参数减少头部参数冗余,加强特征信息的交互能力;最后,借鉴Inner-IoU和WIoUv3的思想优化MPDIoU损失函数为Inner-Wise-MPDIoU,加速模型收敛过程,提高对缺陷的定位精度。实验结果表明,改进算法对输电线路部件缺陷的检测精度mAP50达到了92.1%,较原算法提升了3.4%,参数量和GFLOPs分别减少了19.4%和0.4,证明了该改进算法的有效性。

    Abstract:

    In order to solve the problem that the component defect detection in the transmission line inspection image is easily disturbed by the background environment and the defect target scale is different, resulting in low detection accuracy, an improved YOLOv10n transmission line component defect detection algorithm was proposed. Firstly, the RepViTBlock and ELA attention mechanism were used to redesign the C2f, and the ERC2f module was constructed to suppress the background environment interference, enhance the feature extraction ability of the model, and reduce the parameter redundancy. Secondly, the DASF neck structure was designed by combining dynamic upsampling DySample and attention scale sequence fusion module ASF to improve the multi-scale feature fusion ability of the model. Thirdly, based on the DBB of diversified branch blocks, a reparametric shared convolutional detection header RSCD is proposed, which reduces the redundancy of the header parameters and strengthens the interaction ability of feature information by sharing parameters. Finally, the MPDIoU loss function is optimized to Inner-Wise-MPDIoU by drawing on the ideas of Inner-IoU and WIoUv3 to accelerate the model convergence process and improve the defect positioning accuracy. The experimental results show that the accuracy of the improved algorithm for the detection of transmission line component defects reaches 92.1%, which is 3.4% higher than that of the original algorithm, and the number of parameters and GFLOPs are reduced by 19.4% and 0.4, respectively, which proves the effectiveness of the improved algorithm.

    参考文献
    相似文献
    引证文献
引用本文

王海群,王文科,于海峰.改进YOLOv10n的输电线路部件缺陷检测算法[J].电子测量技术,2025,48(10):62-72

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告