面向嵌入式设备的绝缘子缺陷检测算法研究
DOI:
CSTR:
作者:
作者单位:

1.新疆大学电气工程学院 乌鲁木齐 830017;2.国网乌鲁木齐供电公司 乌鲁木齐 830000

作者简介:

通讯作者:

中图分类号:

TP391.41;TN911.73

基金项目:

国家自然科学基金(62362063,61866037)项目资助


Research on insulator defect detection algorithm for embedded devices
Author:
Affiliation:

1.Electrical Engineering College, Xinjiang University,Urumqi 830017, China; 2.State Grid Urumqi Power Supply Company,Urumqi 830000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对嵌入式设备在资源受限以及雾天复杂环境下绝缘子缺陷检测的高效性与准确性挑战,本文提出了一种新型轻量化检测模型——RNSC-YOLOv7-tiny,并取得了重要的创新性成果与实际应用价值。首先,通过对主干网络中ELAN模块的轻量化处理,设计了RepNCSPELAN模块,有效降低了模型的参数量与计算复杂度,同时保持了检测精度的显著提升。其次,融入SGE模块,使模型能够聚焦与背景重叠的目标区域,显著抑制无关信息的干扰,提升了绝缘子缺陷定位与识别的精确性。此外,引入NWD损失函数解决了检测过程中偏差点导致的梯度消失问题,进一步优化了检测精度。最后,CARAFE上采样算子的引入,使模型在低分辨率图像及复杂雾天环境中依然能够实现精准检测定位。实验结果显示,RNSC-YOLOv7-tiny模型在绝缘子缺陷检测方面展现出了快速且高精度的性能,其检测精度高达94.8%。该模型拥有4298150个参数,浮点运算次数为10.5,同时模型内存占用仅为8.69 MB。与原始YOLOv7-tiny模型相比,新提出的模型在多个关键指标上均实现了显著提升:精度提高了3.4%,参数量减少了28.5%,浮点运算次数降低了19.2%,且模型大小缩减了3.01 MB。这一成果充分验证了该算法在嵌入式设备环境中的高度适用性和实际应用效能。

    Abstract:

    Aiming at the challenges of high efficiency and accuracy of insulator defect detection for embedded devices in resource-constrained and foggy complex environments, this paper proposes a new lightweight detection model, RNSC-YOLOv7-tiny, and achieves important innovative results and practical application value. Firstly, the RepNCSPELAN module is designed by lightweighting the ELAN module in the backbone network, which effectively reduces the number of parameters and computational complexity of the model, while maintaining a significant improvement in detection accuracy. Secondly, the incorporation of the Spatial Group Enhancement module enables the model to focus on the target region overlapping with the background, thereby significantly suppressing the interference of irrelevant information and improving the accuracy of insulator defect localisation and identification. Furthermore, the incorporation of the NWD loss function addresses the issue of gradient vanishing due to deviation points in the detection process, thereby enhancing the overall detection accuracy. Furthermore, the incorporation of the CARAFE upsampling operator enables the model to achieve accurate detection and localisation in low-resolution images and complex foggy environments. The experimental results demonstrate that the RNSC-YOLOv7-tiny model exhibits rapid and highly accurate performance in insulator defect detection, with a detection accuracy of 94.8%. The model comprises 4298150 parameters and 10.5 floating-point operations, yet occupies only 8.69 MB of memory. In comparison to the original YOLOv7-tiny model, the newly proposed model exhibits notable enhancements in several pivotal metrics. The accuracy has been augmented by 3.4%, the number of parameters has been diminished by 28.5%, the number of floating-point operations has been reduced by 19.2%, and the model size has been reduced by 3.01 MB. These outcomes substantiate the algorithm′s high applicability in embedded device environments and its efficacy in practical applications.

    参考文献
    相似文献
    引证文献
引用本文

刘梓良,尼鹿帕尔·艾克木,伊力哈木·亚尔买买提,郭松杰.面向嵌入式设备的绝缘子缺陷检测算法研究[J].电子测量技术,2025,48(14):74-85

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-04
  • 出版日期:
文章二维码