基于PLCnext平台的无人机交通监控系统设计与实现
DOI:
CSTR:
作者:
作者单位:

1.上海电机学院电气学院 上海 200240;2.上海交通大学电子信息与电气工程学院 上海 200240

作者简介:

通讯作者:

中图分类号:

TP391.4;TN919.5

基金项目:

航空科学基金(201944057001)项目资助


Design and implementation of a drone-based traffic monitoring system using the PLCnext platform
Author:
Affiliation:

1.School of Electrical Engineering, Shanghai Dianji University,Shanghai 200240, China;2.School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,Shanghai 200240, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高交通监控的效率,特别是在固定式道路摄像头视角有限的情况下,提出了一种基于PLCnext平台的无人机交通监控系统。该系统结合YOLOv9深度学习方法,控制两台配备摄像头的无人机与PLCnext平台协同,提供更广泛的视野覆盖范围和灵活的监控能力,实现对交通车辆的实时监控。为提高航拍图像中低分辨率场景下的检测精度,提出了YOLOv9s-SPDADown-LSK模型。该模型通过引入SPD层,增强对图像细节特征的保留,使用ADown模块优化下采样过程,并在骨干网络中融入LSK注意力机制,以强化特征提取能力。实验结果表明,系统在图像处理的延迟约为80 ms,改进后的模型在mAP@0.5和mAP@0.5:0.95分别达到了96.3%和82.7%,检测准确率为97.2%,有效减少了误检和漏检,证明了系统的可行性和算法的有效性。

    Abstract:

    To improve traffic monitoring efficiency, particularly in situations where the field of view of fixed road cameras is limited, a drone-based traffic monitoring system using the PLCnext platform is proposed. This system integrates YOLOv9 deep learning technology, enabling two UAVs equipped with cameras to cooperate with the PLCnext platform. This collaboration provides broader coverage and more flexible monitoring capabilities for real-time vehicle surveillance. To enhance detection accuracy in low-resolution aerial images, a new model, YOLOv9s-SPDADown-LSK, is introduced. The model utilizes a SPD layer to improve image detail retention, optimizes the downsampling process with the ADown module, and incorporates the LSK attention mechanism in the backbone network to enhance feature extraction. Experimental results indicate that the system achieves an image processing delay of approximately 80 ms, with the modified model reaching mAP@0.5 and mAP@0.5:0.95 values of 96.3% and 82.7%, respectively. The detection accuracy stands at 97.2%, significantly reducing false positives and false negatives, thereby validating the system′s feasibility and the effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

秦栋,任晓明,叶舟,陈坚.基于PLCnext平台的无人机交通监控系统设计与实现[J].电子测量技术,2025,48(9):119-128

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-23
  • 出版日期:
文章二维码