一种基于注意力的无监督行人重识别方法
DOI:
CSTR:
作者:
作者单位:

1.北京建筑大学智能科学与技术学院 北京 102616;2.城市建筑超级智能技术北京市重点实验室 北京 102616

作者简介:

通讯作者:

中图分类号:

TP391.41;TN919.8

基金项目:

国家重点研发项目(2018YFC0807806)、北京建筑大学基本科研业务基金项目 (X20109)资助


An attention-based unsupervised approach to pedestrianre-identification
Author:
Affiliation:

1.College of Intelligent Science and Technology, Beijing University of Civil Engineering and Architecture,Beijing 102616, China; 2.Beijing Key Laboratory of Super Intelligent Technology for Urban Architecture,Beijing 102616, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    行人重识别是跨摄像头非重叠域中对相同行人的检索和识别,针对跨摄像头不同域之间的特征差异以及聚类阶段生成的伪标签噪声问题,提出一种基于注意力的无监督行人重识别方法。在特征提取阶段,采用一种自适应图通道-空间注意力模块(AGCBAM),同时考虑通道和空间两个维度,通过自适应调整通道权重来适应跨域特征分布,同时关注到特定空间位置特征来实现细节信息的捕捉;在模型训练阶段,提出改进的类内邻近空间注意力(INSA)模块,将标签平滑和正实例之间的空间互补关系相结合,有效去除伪标签噪声,使模型更好地学习数据的真实分布。通过对2个主流数据集Market-1501和MSMT17进行实验,对比了现有的一些常用算法,模型在mAP和Rank-1精度上均有提升,验证了本文所提方法的有效性。

    Abstract:

    Pedestrian re-identification is used to retrieve and recognize the same pedestrian in the non-overlapping fields of cross-camera. Aiming at the feature differences between different fields of cross-camera and the pseudo-label noise generated in the clustering stage, this paper proposes an attention-based unsupervised pedestrian re-identification method. In the feature extraction stage, an adaptive graph channel-spatial attention module (AGCBAM) is proposed, which considers both channel and spatial dimensions, adapts to cross-camera feature distribution by adaptively adjusting channel weights, and pays attention to specific spatial location features to capture details. In training stage, an improved intra-class neighbor spatial attention module is proposed, which combines label smoothing and spatial-level connections of positive instances to better remove pseudo-label noise and enable the model to better learn the real distribution of data. Through experiments on two mainstream datasets, Market-1501 and MSMT17, some existing common algorithms are compared, and the accuracy of mAP and Rank-1 is improved, which verifies the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

胡玉玲,王鑫依,张一,邹伟光.一种基于注意力的无监督行人重识别方法[J].电子测量技术,2025,48(10):161-168

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告