融合轻量化YOLOv8-Pose的烟草茎叶角检测算法
DOI:
CSTR:
作者:
作者单位:

1.云南大学信息学院 昆明 650504;2.云南省烟草农业科学研究院 昆明 650021

作者简介:

通讯作者:

中图分类号:

TN911.73;TP391.41

基金项目:

中国烟草总公司重大科技项目(110202401003 (JY-03))资助


Tobacco stem and leaf angle detection algorithm integrated with lightweight YOLOv8-Pose
Author:
Affiliation:

1.School of Information Science and Technology,Yunnan University,Kunming 650504,China; 2.Yunnan Academy of Tobacco Agriculture Science,Kunming 650021,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    茎叶角检测是烟草表型检测的重要部分,在烟草农业的增产增效和疾病预防方面有重要的意义。针对不同环境下的人工茎叶角检测效率低、周期长、检测不方便等问题,设计并构建了轻量化的烟草茎叶角检测模型FAL-YOLO。该算法构建FAI主干网络结构来充分减少计算量和特征冗余,增加语义信息的利用效率。构建了融合空间注意力和通道注意力SA注意力模块的SAC检测头模块,进一步减少参数量和增强对茎叶角特征的感知能力。引入GSConv轻量化卷积降低模型复杂度和模型参数量。引入MPD-IoU损失函数来提升改进模型整体性能。采用自建的烟草茎叶角检测数据集,开展FAL-YOLO模型的对比和消融实验。实验结果表明,FAL-YOLO模型在自制数据集上的mAP达到了99.2%,相比YOLOV8-POSE模型在GFLOPs,Params分别降低了56.7%和52%,改进后的模型能够更快更精准的识别烟草植株茎叶角,为烟草农业选种育种智慧化提供支持。

    Abstract:

    Stem and leaf angle detection is an important part of tobacco phenotype detection, which is of great significance in increasing yield and efficiency and disease prevention in tobacco farming. Aiming at the problems of low efficiency, long cycle time and inconvenience of manual stem and leaf angle detection in different environments, a lightweight tobacco stem and leaf angle detection model, FAL-YOLO, was designed and constructed.The algorithm builds the FAI backbone network structure to sufficiently reduce the amount of computation and feature redundancy, and increase the efficiency of using semantic information. The SAC detection head module, which integrates the spatial attention and channel attention SA attention modules, is designed to further reduce the number of parameters and improve the perception of stem and leaf angle features. GSConv lightweight convolution is introduced to reduce model complexity and the number of model parameters. The MPD-IoU loss function is introduced to improve the overall performance of the model. A self-constructed tobacco stem and leaf angle detection dataset is used to carry out the comparison and ablation experiments of the FAL-YOLO model. The experimental results show that the mAP of the FAL-YOLO model on the self-constructed dataset reaches 99.2%, compared with the YOLOV8-POSE model in the GFLOPs, the Params are reduced by 56.7% and 52%, respectively, and the improved model is capable of identifying the stem and leaf angles of tobacco plants faster and more accurately, which can support the wisdom of tobacco agricultural seed selection and breeding.

    参考文献
    相似文献
    引证文献
引用本文

高坤,李军营,梁虹,马二登,张宏.融合轻量化YOLOv8-Pose的烟草茎叶角检测算法[J].电子测量技术,2025,48(13):84-95

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告