基于弛豫电压曲线的磷酸铁锂电池模组SOH评估
DOI:
CSTR:
作者:
作者单位:

1.上海电力大学上海市电力材料防护与新材料重点实验室 上海 200090; 2.北京大学鄂尔多斯能源研究院 鄂尔多斯 017000

作者简介:

通讯作者:

中图分类号:

TN702

基金项目:


The state of health assessment of lithium iron phosphate battery module based on relaxation voltage curves
Author:
Affiliation:

1.Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power,Shanghai 200090,China;2.Ordos Research Institute of Energy,Peiking University,Ordos 017000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电池健康状态(SOH)的评估是电池系统的关键技术之一,其准确性对电池系统的安全运行至关重要。弛豫电压曲线含有丰富的电池信息,而且弛豫时间短,适用于非恒定工况下的电池健康状态评估。本文利用弛豫电压曲线来评估磷酸铁锂电池模组的健康状态。首先,建立了基于时间常数与弛豫时间线性相关的磷酸铁锂(LFP)电池模组的弛豫电压模型,并采用粒子群优化(PSO)算法对弛豫电压曲线参数辨识,提取健康因子。其次,开发了基于鹈鹕算法(POA)优化的卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的混合模型,用来评估电池的SOH。研究结果表明,无论是采用1/2 C倍率还是1 C倍率充放电获得的弛豫电压曲线,经过PSO算法参数辨识得到的变时间常数电压值与真实弛豫电压值的相对误差(RE)均不超过±0.12%,表明PSO方法对不同倍率下的弛豫电压具有良好的参数辨识效果。采用1/2 C倍率充放电后的弛豫电压曲线,在训练集低至5%的情况下,测试集利用POA-CNN-BiLSTM模型得到的SOH评估相对误差仍不超过±1.2%;而在1 C充放电倍率下,训练集低至5%时,测试集利用POA-CNN-BiLSTM模型得到的SOH评估相对误差仍不超过±1.6%,表明POA-CNN-BiLSTM模型评估电池SOH具有较高的精度。

    Abstract:

    The assessment of state of health (SOH) of batteries is one of the key technologies in battery systems, and its accuracy is crucial for the safe operation of battery systems. The relaxation voltage curve contains rich battery information and has a short relaxation time, making it suitable for evaluating the state of health of batteries under non constant operating conditions. This article uses the relaxation voltage curve to evaluate the state of health of lithium iron phosphate battery modules. Firstly, a relaxation voltage model for lithium iron phosphate (LFP) battery modules based on linear correlation between time constant and relaxation time was established, and particle swarm optimization (PSO) algorithm was used to identify the parameters of the relaxation voltage curve and extract health factors. Secondly, a hybrid model of convolutional neural networks (CNN) and bidirectional long short-term memory (BiLSTM) optimized based on pelican optimization algorithm (POA) was developed to evaluate the SOH of batteries. The research results show that regardless of whether the relaxation voltage curve is obtained by charging and discharging at 1/2 C rate or 1 C rate, the relative error (RE) between the variable time constant voltage value identified by PSO algorithm parameters and the true relaxation voltage value does not exceed ±0.12%, indicating that PSO method has good parameter identification effect on relaxation voltage at different rates. Using the relaxation voltage curve after charging and discharging at a rate of 1/2 C, the relative error of SOH evaluation obtained using the POA-CNN-BiLSTM model in the test set still does not exceed ±1.2% even when the training set is as low as 5%, At a charge discharge rate of 1 C, when the training set was as low as 5%, the relative error of SOH evaluation obtained using the POA-CNN-BiLSTM model in the test set still did not exceed ±1.5%, indicating that the POA-CNN-BiLSTM model has high accuracy in evaluating battery SOH.

    参考文献
    相似文献
    引证文献
引用本文

陈鑫,马慧敏,郄晶晶,郭志鹏,廖强强.基于弛豫电压曲线的磷酸铁锂电池模组SOH评估[J].电子测量技术,2025,48(12):117-127

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-28
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告