跨尺度特征融合的自适应水下目标检测算法
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学电子与信息工程学院 南京 210044;2.无锡学院江苏省集成电路可靠性技术及检测系统工程 研究中心 无锡 214105

作者简介:

通讯作者:

中图分类号:

TP391.4;TN914

基金项目:

国家青年自然科学基金(62204172)、江苏省高等学校自然科学基金(22KJB140016)资助


Adaptive cross-scale feature fusion for underwater object detection algorithm
Author:
Affiliation:

1.School of Electronic and Information Engineering,Nanjing University of Information Science and Technology, Nanjing 210044,China;2.Jiangsu Province Engineering Research Center of Integrated Circuit Reliability Technology and Testing System,Wuxi University, Wuxi 214105,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水下目标检测常面临复杂环境干扰、检测系统不稳定以及检测精度低等问题。为此,本文提出了一种基于自适应特征提取与跨尺度特征融合策略的轻量化目标检测算法WAD-YOLOv8。首先,在主干网络中引入基于上下文信息的残差特征提取模块(CCRF),增强模型对全局和局部信息的综合能力。其次,采用可变大核卷积注意力机制引导的轻量化模块(ADFE),使网络在下采样阶段能够自适应调整采样特征,提高目标特征提取的精准性。最后,重构颈部网络特征融合策略,增加新的跨尺度特征融合连接,增强模型的抗干扰能力和多尺度目标检测性能。试验结果表明,WAD-YOLOv8在模型参数量和计算量均低于基准模型的情况下,检测精度提升了3.0%,平均检测精度mAP50提高了2.6%,推理速度达到64 FPS。与经典算法相比,WAD-YOLOv8在复杂水下场景中表现出更优的检测效果和更高的稳定性,为水下移动检测平台提供了一种高效、轻量化的目标检测解决方案。

    Abstract:

    Underwater object detection often faces challenges such as complex environmental interference, unstable system performance, and low detection accuracy. To address these issues, this paper proposes WAD-YOLOv8, a lightweight object detection algorithm based on adaptive feature extraction and cross-scale feature fusion strategies. First, a context-aware residual feature extraction module (CCRF) is introduced in the backbone network, enabling the model to effectively integrate global and local information. Second, an adaptive down-sampling module (ADFE) guided by variable large kernel convolution attention mechanisms is employed to adjust sampling features dynamically, enhancing the network′s adaptability. Finally, the neck network is restructured by incorporating new cross-scale feature fusion connections, significantly improving the model′s robustness against environmental interference. Experimental results demonstrate that, compared to the baseline model, WAD-YOLOv8 achieves a 3.0% improvement in detection accuracy and a 2.6% increase in mAP50, while reducing model parameters and computation by substantial margins. The detection speed reaches 64 FPS, outperforming classical algorithms in both effectiveness and stability. These improvements highlight the model′s capability to address the challenges of underwater object detection, offering a highly efficient and reliable solution for complex underwater environments.

    参考文献
    相似文献
    引证文献
引用本文

李海龙,黄孙港,饶兴昌.跨尺度特征融合的自适应水下目标检测算法[J].电子测量技术,2025,48(13):129-138

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-04
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告