基于自适应可能性C均值的云相态识别方法
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学电子与信息工程学院 南京 210044;2.无锡学院江苏省通感融合光子器件及系统集成工程研 究中心 无锡 214105

作者简介:

通讯作者:

中图分类号:

TP413; TN98

基金项目:

江苏省基础研究计划重点项目(BK20243021)、江苏省产学研合作项目(BY20230745)、江苏省高等学校基础科学研究面上项目(22KJB510043)、无锡市科技创新创业资金“太湖之光”科技攻关计划(K20241049)、无锡学院引进人才科研启动专项经费(550222001,550221028,550223012)项目资助


Cloud phase recognition method based on adaptive possibility C-means
Author:
Affiliation:

1.School of Electronic and Information Engineering, Nanjing University of Information Science and Technology,Nanjing 210044, China;2.Jiangsu Engineering Research Center for Sensor Fusion Photonic Devices and System Integration, Wuxi University,Wuxi 214105, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    云相态不仅是气象学和气候学研究的重要参量,也是云参数反演的关键要素,准确识别云相态对天气监测和预报至关重要。传统的云相态识别方法多依赖阈值设定,主观性强且可靠性不高。为此,本研究提出了一种基于半监督的自适应可能性C均值算法,该算法通过半监督学习并结合自适应特征加权机制和正则化技术,增强了多维数据处理能力和分类的稳健性。通过对拉曼激光雷达和毫米波云雷达数据的应用,该方法能够实现对冰云、水占主体的混合云、冰占主体的混合云及过冷水云的精确分类。与算法改进前相比,分类准确率从0.699提升到0.967,显著提高了云相态分类的准确性。

    Abstract:

    Cloud phase is not only an important parameter in meteorological and climatological research but also a key element in cloud parameter inversion. Accurate identification of cloud phase is crucial for weather monitoring and forecasting. Traditional cloud phase recognition methods often rely on threshold setting, which is highly subjective and not very reliable. Therefore, this paper proposes a semi-supervised adaptive possibility C-means algorithm that enhances the processing capability of multi-dimensional data and the robustness of classification through semi-supervised learning combined with an adaptive feature weighting mechanism and regularization techniques. By applying this method to Raman lidar and millimeter-wave cloud radar data, it is possible to accurately classify ice clouds, water-dominated mixed clouds, ice-dominated mixed clouds, and supercooled water clouds. Compared with the algorithm before improvement, the classification accuracy has been significantly increased from 0.699 to 0.967, greatly improving the accuracy of cloud phase classification.

    参考文献
    相似文献
    引证文献
引用本文

周颖,李晨,李红旭.基于自适应可能性C均值的云相态识别方法[J].电子测量技术,2025,48(7):28-35

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-12
  • 出版日期:
文章二维码