基于改进DLO算法的无人叉车同时定位与建图
DOI:
CSTR:
作者:
作者单位:

1.安徽工程大学人工智能学院 芜湖 241000;2.安徽工程大学机械与汽车工程学院 芜湖 241000; 3.芜湖云擎机器人科技有限公司 芜湖 241000

作者简介:

通讯作者:

中图分类号:

TN249; TN951

基金项目:

国家自然科学基金(51605229)、安徽省高校自然科学基金(2023AH050928)、安徽省高校协同创新项目(GXXT-2023-076)、安徽省经信委制造业重点领域揭榜挂帅项目(JB22031)、安徽未来技术研究院企业合作项目(2023qyhz35)资助


Simultaneous localization and mapping of unmanned forklift based on improved DLO algorithm
Author:
Affiliation:

1.School of Artificial Intelligence, Anhui Polytechnic University,Wuhu 241000,China; 2.School of Mechanical Engineering, Anhui Polytechnic University,Wuhu 241000,China; 3.Wuhu Yunqing Robot Technology Co., Ltd.,Wuhu 241000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    堆垛式无人叉车在仓储和物流管理中负责货物的堆垛和取放任务,在工业环境中,需要开发快速而准确的状态估计和环境感知算法,以便实现无人叉车的自主导航运动。然而,直接使用激光雷达里程计进行状态估计时,往往会导致建图不准确和位姿漂移等问题。为此,提出了一种基于改进DLO算法的堆垛式无人叉车同时定位与建图方法。利用惯性测量单元提供的运动模型以及多线激光雷达的点云数据,对叉车的初始位姿进行先验估计。通过DLO SLAM算法的前端,采用广义最小二乘法进行扫描匹配,实时估计叉车的位姿并构建地图。利用HDL-Graph-SLAM的后端位姿图优化和回环检测,进一步提升地图重建的精度。实验结果表明,该方案能够有效抑制动态环境中的地图漂移及误差累积问题。与DLO SLAM相比,定位精度提高了60.9%,与Cartographer算法相比提高了56.9%,同时,稳定性也显著提升,能够满足堆垛式无人叉车同时定位与建图的要求。

    Abstract:

    Stacking unmanned forklifts are responsible for the stacking and picking of goods in warehousing and logistics management. In industrial environments, it is necessary to develop fast and accurate state estimation and environment perception algorithms in order to achieve autonomous navigation movement of unmanned forklift trucks. However, when using LiDAR odometer for state estimation, problems such as inaccurate mapping and pose drift are often encountered. Therefore, a method of simultaneous localization and mapping of pileup unmanned forklift based on improved DLO algorithm is proposed. Firstly, the motion model provided by the inertial measurement unit and the point cloud data of the multi-line LiDAR are combined to perform a prior estimation of the initial pose of the forklift. Then, through the front end of DLO SLAM, the generalized least square method is used to scan and match, and the pose of the forklift is estimated in real time and the map is constructed. Finally, the back-end pose optimization and loop detection of HDL-Graph-SLAM are used to further improve the accuracy of map reconstruction. Experimental results show that the proposed scheme can effectively suppress map drift and error accumulation in dynamic environment. Compared with DLO SLAM, the localization accuracy is improved by 60.9% and compared with Cartographer algorithm by 56.9%. At the same time, the stability is also significantly improved to meet the requirements of stacking unmanned forklifts for accurate and efficient simultaneous localization and mapping.

    参考文献
    相似文献
    引证文献
引用本文

程军,毛伟,汪步云,许德章,杨秋生.基于改进DLO算法的无人叉车同时定位与建图[J].电子测量技术,2025,48(8):88-98

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-23
  • 出版日期:
文章二维码