航空发动机叶型图像检测神经网络配准算法
DOI:
CSTR:
作者:
作者单位:

南昌航空大学动力与能源学院 南昌 330063

作者简介:

通讯作者:

中图分类号:

TN06

基金项目:

江西省重点基金(20201BBE51002)项目资助


Neural network registration algorithm for aero engine blade shape image detection
Author:
Affiliation:

School of Power and Energy Engineering, Nanchang Hangkong University,Nanchang 330063, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的ORB算法在航空发动机叶型图像拼接下,特征点检测数量不稳定,出现误检、漏检、尺寸不变性较差,以及拼接精度低等问题,本文开展了叶型图像拼接实验研究,并提出了一种结合卷积神经网络改进的角点检测ORB-CNN算法。该算法的思想为:应用改进后的角点检测算法在构建图像金字塔下实现不同尺度下的角点提取,在特征点检测阶段,使用卷积神经网络(CNN)替代FAST算法中的16像素圆环所建立FAST-n检测,根据领域像素数量,在CNN中添加卷积层,即添加设计卷积核,提取图像中与FAST-n检测相关的特征。采用BRIEF方法获取检测特征点描述子,计算Hamming距离,实现了特征点的精准匹配。实验结果表明,对比于传统ORB算法以及SIFT算法,改进后的算法特征点提取均匀度分别提升了18.83%、33.36%。在光照变化实验中,改进算法在强光和暗光条件下的特征点匹配精度分别提升了16.63%和19.04%。在尺寸不变性及旋转不变性测试中,改进算法在图像缩放和旋转后仍能稳定匹配特征点,对比原ORB算法及SIFT算法,其特征点偏距及匹配精确率分别提升了66.95%、64.26%、12.63%、6.62%。该方法有效克服了传统ORB算法在尺寸不变性层面的局限性,还保留了ORB算法在配准速度及质量上的优势,显著提升了在复杂环境下的检测性能和鲁棒性,为航空发动机叶型间隙非接触测量奠定了基础。

    Abstract:

    In order to solve the problems of unstable number of feature points, false detection, missed detection, poor size invariance, and low stitching accuracy under the traditional ORB algorithm in the leaf shape image stitching of aero engines, this paper carries out experimental research on leaf shape image stitching and proposes an improved corner detection ORB-CNN algorithm combined with a convolutional neural network. The idea of the algorithm is as follows: The improved corner detection algorithm is applied to realise corner extraction at different scales under the construction of the image pyramid. In the feature point detection stage, the convolutional neural network(CNN) is used to replace the FAST-n detection established by the 16-pixel ring in the FAST algorithm, and the convolutional layer is added to the CNN according to the number of pixels in the domain, that is, the design convolutional kernel is added to extract features related to FAST-n detection in the image. The BRIEF method was used to obtain the descriptor of the detected feature points, and the Hamming distance was calculated, so as to achieve accurate matching of the feature points. Experimental results show that compared with the traditional ORB algorithm and SIFT algorithm, the uniformity of feature point extraction of the improved algorithm is increased by 18.83% and 33.36%, respectively. In the illumination change experiment, the accuracy of feature point matching of the improved algorithm under strong light and dark light conditions is improved by 16.63% and 19.04%, respectively. Compared with the original ORB algorithm and SIFT algorithm, the feature point offset and matching accuracy are increased by 66.95%, 64.26%, 12.63% and 6.62%, respectively. This method effectively overcomes the limitations of the traditional ORB algorithm in terms of size invariance, and also retains the advantages of the ORB algorithm in terms of registration speed and quality, significantly improving detection performance and robustness in complex environments, and laying a foundation for the non-contact measurement of the blade gap of aero engines.

    参考文献
    相似文献
    引证文献
引用本文

王朝虎,卢洪义,吴文勇,李林蔚,熊双.航空发动机叶型图像检测神经网络配准算法[J].电子测量技术,2025,48(8):55-70

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-23
  • 出版日期:
文章二维码