基于改进高斯混合模型的光伏短时波动信号游程聚类分析方法
DOI:
CSTR:
作者:
作者单位:

1.中国计量大学机电工程学院 杭州 310018;2.中国计量科学研究院 北京 100013

作者简介:

通讯作者:

中图分类号:

TB971; TN98

基金项目:

国家自然科学基金(52107132)、浙江省自然科学基金(LQ22E070006)项目资助


Run clustering for short-term fluctuation of photovoltaic based on improved Gaussian mixture model
Author:
Affiliation:

1.Mechanical and Electrical Engineering, China Jiliang University,Hangzhou 310018, China; 2. National Institute of Metrology, Beijing 100013, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对大规模光伏发电短时波动性对电能准确计量的挑战,本文提出一种基于改进高斯混合模型的光伏短时波动信号游程聚类分析方法。首先,从游程理论出发分析了光伏输出的短时波动信号特征;其次,针对光伏短时波动信号分解得到游程过多、难以提取典型波动特征的问题,采用基于改进高斯混合模型聚类方法对海量游程进行聚类;进一步提出了主客观融合的聚类结果评价方法。最后,对光伏电站现场录波数据的仿真结果表明,相较于其他方法,所提方法聚类结果评分在各方面有1.1%~61.4%的提升;在不同噪声及异常值水平下所提方法也可以维持较好的聚类效果,复合指标评分下降程度小于其他算法0.92%~18.24%。所提方法通过深度学习技术和贝叶斯信息准则实现了高斯混合模型的自适应聚类,提高了对含噪声和异常值数据的适应能力和稳定性,能够实现光伏电站时波动信号游程的合理聚类。

    Abstract:

    To address the challenge of short-term fluctuation of large-scale photovoltaic power generations pose a challenge to accurate energy measurement, this paper proposes a new method for run clustering for short-term fluctuation of photovoltaic based on improved Gaussian mixture model. Firstly, the characteristics of short-term fluctuation signals of photovoltaic output are analyzed based on the run theory. Secondly, to address the issue of excessive run and difficulty in extracting typical features in the power generation of photovoltaic, the clustering method based on the improved Gaussian mixture model is adopted to cluster the massive run. Furthermore, a subjective-objective fusion evaluation method for clustering results is proposed. Finally, the simulation results of on-site recorded waveforms from photovoltaic power stations show that, compared with other methods, the proposed method has an improvement in clustering result scores ranging from 1.1% to 61.4% in different aspects. The proposed method can maintain good clustering effects under different noise and outlier levels, with a decrease in the composite index score that is less than that of other algorithms by 0.92% to 18.24%. The proposed method achieves adaptive clustering of the Gaussian mixture model through deep learning technology and the Bayesian information criterion, enhancing its adaptability and stability to noisy and outlier data, and enabling reasonable clustering of run-lengths of photovoltaic power station short-term fluctuation signals.

    参考文献
    相似文献
    引证文献
引用本文

彭文静,郑迪,蔡慧,邵海明,王家福.基于改进高斯混合模型的光伏短时波动信号游程聚类分析方法[J].电子测量技术,2025,48(7):126-134

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-12
  • 出版日期:
文章二维码