基于TBKA-P&O算法的光伏系统MPPT控制研究
DOI:
CSTR:
作者:
作者单位:

山西大学自动化与软件学院 太原 030031

作者简介:

通讯作者:

中图分类号:

TN01

基金项目:

山西省科技厅项目(202203021222013)、吕梁市科技局项目 (2022JBGS02)资助


Research on MPPT control of photovoltaic systems based on the TBKA-P&O algorithm
Author:
Affiliation:

School of Automation and Software Engineering, Shanxi University,Taiyuan 030031, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对光伏阵列输出功率曲线在局部遮阴条件下存在多峰值的特性,导致传统算法在最大功率点跟踪(MPPT)过程中易陷入局部最优的问题,本文提出一种基于改进黑翅鸢算法(TBKA)与扰动观察法(P&O)相结合的MPPT控制策略,称为TBKA-P&O算法。在全局搜索阶段,首先通过Tent-Logistic-Cosine混沌映射初始化种群,其次引入切线飞行策略优化TBKA算法的搜索效率和收敛精度,同时设计了一种基于贪婪策略的动态透镜成像反向学习策略用于提升搜索多样性,避免陷入局部最优;在局部搜索阶段,结合P&O实现最大功率点的快速定位和高精度跟踪。为验证算法的有效性,构建了包含传统P&O算法、BKA-P&O算法、量子CS-P&O算法以及TBKA-P&O算法的光伏发电系统仿真模型,实验结果显示,TBKA-P&O在4种工况下的跟踪精度分别为100%、99.97%、99.96%和99.96%,跟踪时间分别为0.093、0.090、0.077和0.047 s。与其他算法相比,TBKA-P&O算法在动态追踪速度、稳态跟踪精度及功率振荡控制方面均表现出显著优势。

    Abstract:

    To address the issue of traditional algorithms being prone to local optima during the maximum power point tracking (MPPT) process due to the multipeak characteristic of photovoltaic array output power curves under partial shading conditions, this paper proposes an MPPT control strategy combining the improved Black-winged kite algorithm (TBKA) and the Perturb and observe method (P&O), referred to as TBKA-P&O. In the global search phase, the population is first initialized using the Tent-Logistic-Cosine chaotic mapping. Then, a tangent flight strategy is introduced to enhance the search efficiency and convergence accuracy of the TBKA. Additionally, a dynamic lens imaging reverse learning strategy based on a greedy approach is designed to improve search diversity and prevent local optima. In the local search phase, the P&O method is incorporated to achieve rapid localization and high-precision tracking of the maximum power point. To verify the effectiveness of the proposed algorithm, a photovoltaic power generation system simulation model was constructed, incorporating the traditional P&O algorithm, the BKA-P&O algorithm, the quantum CS-P&O algorithm, and the TBKA-P&O algorithm. Experimental results demonstrate that the TBKA-P&O algorithm achieved tracking accuracies of 100%, 99.97%, 99.96% and 99.96% under four operating conditions, with corresponding tracking times of 0.093, 0.090, 0.077 and 0.047 s. Compared to other algorithms, the TBKA-P&O algorithm exhibited significant advantages in terms of dynamic tracking speed, steady-state tracking accuracy, and power oscillation control.

    参考文献
    相似文献
    引证文献
引用本文

王欣峰,姜鑫杰,张丕,赵思琴.基于TBKA-P&O算法的光伏系统MPPT控制研究[J].电子测量技术,2025,48(7):36-45

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-12
  • 出版日期:
文章二维码