基于多路径增强特征的早期烟雾检测算法
DOI:
CSTR:
作者:
作者单位:

新疆大学智能制造现代产业学院机械工程学院 乌鲁木齐 830017

作者简介:

通讯作者:

中图分类号:

TP391.41;TN27

基金项目:

新疆维吾尔自治区重点研发计划项目(2022B01050-2)资助


Early smoke detection algorithm based on multi-path enhanced features
Author:
Affiliation:

School of Intelligent Manufacturing Modern Industry, School of Mechanical Engineering, Xinjiang University,Urumqi 830017, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    早期烟雾检测是及时消除火灾隐患的有效手段,然而火灾早期的烟雾尺度小且扩散形式复杂,这使得其检测极具挑战性。针对以上问题,提出了一种基于多路径增强特征的早期烟雾检测算法MEF-YOLO。该算法采用QA-ELAN改进了骨干网络,实现了模型复杂度和精度兼顾优化;并设计了FGCA自主增强样本区域间的特征差异,以有效捕捉烟雾的空间信息;且通过MEFAN优化特征融合路径,实现了跨层次特征间的直接交互,有效缓解了细节信息损失;又引入Wise-IOU损失函数,通过权重调整机制全面考虑位置和尺度信息,进而提高其在复杂场景的鲁棒性。实验结果表明,在不同光照以及小尺度烟雾、烟雾扩散等实验场景中,本研究提出的算法对早期烟雾的检测准确率高达92.5%,并且更具轻量化优势,参数量和GFLOPs分别下降了27.5%和30.6%。

    Abstract:

    Early smoke detection is an effective means to eliminate fire hazards in a timely manner, but the small size and complex diffusion form of smoke in the early stage of a fire make its detection extremely difficult. To address the above problems, this paper proposes a multi-path enhanced feature-based YOLO (MEF-YOLO)early smoke detection algorithm, which adopts QA-ELAN to improve the backbone network and optimise the model complexity and accuracy, and develops FGCA to autonomously enhance the feature differences between the sampling regions to effectively capture the spatial information of the smoke. And the feature fusion path is optimised by the MEFAN, which realises the direct interaction between cross-level features and effectively mitigates the loss of detail information; and a Wise-IOU loss function is introduced, which comprehensively takes into account the position and scaling information through the weight adjustment mechanism to improve the robustness of the model in the complex scene. The experimental results show that the algorithm proposed in this paper has an accuracy of up to 92.5% for early smoke detection in experimental scenarios with different lighting and small-scale smoke and smoke diffusion, and has a lightweight advantage, with the number of parameters and GFLOPs reduced by 27.5% and 30.6%, respectively.

    参考文献
    相似文献
    引证文献
引用本文

司盼召,何丽,王宏伟,冉腾.基于多路径增强特征的早期烟雾检测算法[J].电子测量技术,2025,48(7):142-151

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-12
  • 出版日期:
文章二维码