基于双流特征增强网络的超短期光伏功率预测
DOI:
CSTR:
作者:
作者单位:

1.内蒙古工业大学电力学院 呼和浩特 010080;2.大规模储能技术教育部工程研究中心 呼和浩特 010080

作者简介:

通讯作者:

中图分类号:

TM615;TN06

基金项目:

国家自然科学基金(62363029)、内蒙古科技计划项目(2020GG0283,2021GG0256)资助


Ultra-short-term photovoltaic power prediction based on two-stream feature enhancement network
Author:
Affiliation:

1.College of Electric Power, Inner Mongolia University of Technology,Hohhot 010080, China;2.Engineering Research Center of Large Energy Storage Technology, Ministry of Education,Hohhot 010080, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    云层的遮挡会导致光伏功率发生剧烈波动,给电力系统的稳定运行带来巨大的挑战。本研究针对云层遮挡时光伏功率波动大、复杂天气条件下预测精度低等问题,提出了一种基于双流特征增强网络的超短期光伏功率预测模型(TSFE-LSTM)。首先,基于畸变校正算法和光流计算优化处理了地基云图,通过双流卷积网络提取了地基云图序列的时空特征。其次,设计了基于长短期记忆网络的超短期光伏功率预测模型,实现了未来15 min光伏功率的预测。实验结果表明,TSFE-LSTM模型融合地基云图与光流图后,光伏功率预测值的MAE、RMSE较单独输入地基云图分别提高了5.81%、4.61%。在晴天时,TSFE-LSTM模型较CNN模型MAE、RMSE分别提高了7.23%、14.99%,阴天时,TSFE-LSTM模型预测精度略有下降,较CNN-MLP模型 MAE、RMSE分别提高了3.53%、1.26%。为云层遮挡时光伏功率预测提供了新思路。

    Abstract:

    Cloud cover can cause dramatic fluctuations in photovoltaic (PV) power, which poses a great challenge to the sTable operation of the power system. In order to address the problems of large fluctuation of PV power with cloud cover and low accuracy under highly complex weather conditions, we propose an ultra-short-term PV power prediction model based on two-stream feature enhancement network (TSFE-LSTM). Firstly, the groundbased cloud images are processed by fish-eye image correction algorithm and optical flow estimation algorithm, and the spatiotemporal feature of the ground-based cloud image is extracted by the two-stream convolutional network. Secondly, an ultra-short-term PV power prediction model based on two-stream feature enhancement network is built to predict the PV power in the next 15 min. The results of the experiment show that the MAE and RMSE of the TSFE-LSTM model for PV power prediction in the next 15 min are 6.49% and 10.76% with the input of ground-based cloud image and optical flow, respectively, which are improved by 5.81% and 4.61%, respectively, compared with the single input data. In sunny conditions, the MAE and RMSE of TSFE-LSTM model improved 7.23% and 14.99% than the CNN model, respectively. In cloudy conditions, the accuracy of the model is slightly de-creased, but the MAE and RMSE are improved by 3.53% and 1.26%, respectively, compared with the CNN-MLP model. This provides new ideas for PV power prediction with cloud cover.

    参考文献
    相似文献
    引证文献
引用本文

辛峰悦,寇志伟,刘焱晨,崔啸鸣,齐咏生.基于双流特征增强网络的超短期光伏功率预测[J].电子测量技术,2025,48(5):65-73

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-17
  • 出版日期:
文章二维码