基于改进YOLOv8的绝缘子缺陷检测方法
DOI:
CSTR:
作者:
作者单位:

1.湖北工业大学电气与电子工程学院 武汉 430068;2.南卡罗来纳大学计算机科学与工程系 南卡哥伦比亚 29201

作者简介:

通讯作者:

中图分类号:

TN606

基金项目:

国家自然科学基金(61571182,61601177)、国家留学基金(201808420418)、湖北省自然科学基金(2019CFB530)、湖北省科技厅重大专项(2019ZYYD020)项目资助


Insulator defect detection method based on improved YOLOv8
Author:
Affiliation:

1.College of Electrical and Electronic Engineering, Hubei University of Technology,Wuhan 430068, China; 2.Department of Computer Science and Engineering, University of South Carolina, Columbia 29201, America

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确检测出绝缘子缺陷是电网维护的主要任务之一,针对目前绝缘子缺陷检测算法识别精度不高和模型过大而难以部署至无人机等移动端设备的问题,提出了以YOLOv8算法为基础网络进行改进以实现提高检测精度并将模型轻量化的方法。该方法采用多尺度融合网络BiFPN中的特征融合模式充分融合多尺度特征,然后在原算法中融入可变形注意力机制DAttention以较低复杂度提取特征,此外引入融合平均池化和最大池化的坐标注意力DAF-CA增强关键信息,最后改用最小点距损失函数MPDIoU作为损失函数改善边界框回归的训练效果,从而提高算法精度。在数据集上进行了多组对比实验,结果表明该文提出的方法均值平均精度可达约91.0%,模型浮点数和参数量分别为7.2 G和2.07 M,各项性能指标均优于目前常用的检测算法。该方法可为电网智能巡检提供参考。

    Abstract:

    Accurately detecting insulator defects is one of the main tasks of power grid maintenance. In response to the problems of low recognition accuracy of current insulator defect detection algorithms and large models that are difficult to deploy to mobile devices such as drones, a method based on YOLOv8 is proposed to improve the detection accuracy and lightweight the model. This method uses the feature fusion mode in a bi directional feature pyramid network BiFPN to fully fuse multi-scale features, and then integrates a deformable attention mechanism DAttention into the original algorithm to extract features with lower complexity. In addition, it introduces a fusion of average pooling and maximum pooling coordinate attention DAF-CA to enhance key information, and finally uses the minimum point distance based Intersection over Union MPDIoU as the loss function to improve the training effect of bounding box regression, thereby improving the accuracy of the algorithm. Multiple comparative experiments were conducted on the dataset, and the results showed that the proposed method achieved an average accuracy of about 91.0%. The model had a floating point count of 7.2 G and a parameter count of 2.07 M, respectively, and all performance indicators were superior to commonly used detection algorithms. This method can provide reference for intelligent inspection of power grids.

    参考文献
    相似文献
    引证文献
引用本文

杨茜,熊炜,孟圣哲,黄玉谦.基于改进YOLOv8的绝缘子缺陷检测方法[J].电子测量技术,2025,48(7):86-97

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-12
  • 出版日期:
文章二维码