一种基于VDSEC-UNet的遥感影像建筑物提取方法
DOI:
CSTR:
作者:
作者单位:

黑龙江科技大学计算机与信息工程学院 哈尔滨 150022

作者简介:

通讯作者:

中图分类号:

TP391;TN911.73

基金项目:

国家自然科学基金(61803148)、黑龙江省哲学社会科学研究规划项目(23YSD245)、黑龙江省属高等学校基本科研业务费项目(2024-KYYWF-1099)资助


A method of building extraction from remote sensing images based on VDSEC-UNet
Author:
Affiliation:

School of Computer and Information Engineering, Heilongjiang University of Science and Technology,Harbin 150022, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来卷积神经网络在遥感影像建筑物提取研究中取得了极大的成功,但其仍然面临着整体提取精度不高、错分、漏分和边界模糊等问题。针对以上问题,提出一种基于VDSEC-UNet的遥感影像建筑物提取方法。首先,使用VGG-16作为编码器,以提取建筑物特征信息;其次,使用动态上采样代替传统上采样,增强模型对细节的感知能力,从而提升建筑物边界的提取精度;接着,在编解码器中间嵌入一个多尺度上下文信息提取模块,以充分考虑建筑物周围其他对象影响,引入足够的上下文信息及不同感受野下的全局信息,减少空间信息损失,提升对不同尺度建筑物的提取效果;然后,在每个跳跃连接部分嵌入ECA注意力机制,提高模型对影像中建筑物特征的关注度;同时,使用联合损失函数缓解类别不平衡问题;最后,构造CA-DPGHead模块并加在解码器末尾,以增强建筑物与背景之间的区分,使模型更加精准地定位和识别图像中的建筑物信息,进而提升对小型建筑物的提取精度并细化建筑物边界的提取效果。实验结果表明,VDSEC-UNet在Massachusetts和Inria数据集上的mIoU分别达到了82.07%和84.35%,F1指数分别达到了83.34%和86.66%,优于其他经典方法。

    Abstract:

    In recent years, convolutional neural networks have achieved great success in the study of building extraction from remote sensing images, but they still face problems such as low overall extraction accuracy, misclassification, omission, and fuzzy boundaries. Aiming at the above problems, a building extraction method based on VDSEC-UNet for remote sensing images is proposed. Firstly, VGG-16 is used as the encoder to extract the building feature information. Secondly, dynamic up-sampling is used instead of traditional up-sampling to enhance the model′s ability to perceive the details so as to improve the extraction accuracy of the building boundaries. Next, a multi-scale context information extraction module is embedded in the middle of the coder and decoder in order to take the influence of other objects around the building into account and introduce sufficient context information and global information under different sensing fields to reduce the loss of spatial information and enhance the extraction effect of buildings at different scales. Then, the ECA attention mechanism is embedded in each jump connection part to improve the model′s attention to the building features in the image. At the same time, the joint loss function is used to alleviate the category imbalance problem. Finally, the CA-DPGHead module is constructed and added at the end of the decoder to enhance the distinction between buildings and background so that the model can locate and identify the building information in the image more accurately, which in turn improves the extraction accuracy of small buildings and refines the extraction effect of building boundaries. The experimental results show that the mIoU of VDSEC-UNet on Massachusetts and Inria datasets reaches 82.07% and 84.35%, respectively, and the F1 index reaches 83.34% and 86.66%, respectively, which is better than other classical methods.

    参考文献
    相似文献
    引证文献
引用本文

张剑飞,王友为.一种基于VDSEC-UNet的遥感影像建筑物提取方法[J].电子测量技术,2025,48(10):144-152

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告