改进YOLOv5s的轴承座缺陷检测算法
DOI:
CSTR:
作者:
作者单位:

1.四川轻化工大学机械工程学院 宜宾 644000; 2.四川长征机床集团有限公司 自贡 643000

作者简介:

通讯作者:

中图分类号:

TN919.2

基金项目:

自贡市科技局校地合作项目(2022CDZG-19)资助


Improved YOLOv5s algorithm for bearing seat defect detection
Author:
Affiliation:

1.School of Mechanical Engineering, Sichuan University of Science & Engineering,Yibin 644000,China; 2.Sichuan Changzheng Machine Tool Group Co.,Ltd., Zigong 643000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前数控机床轴承座缺陷检测主要依赖人工目检,无法满足工业生产高精度、高效率和低错误率的要求。针对以上问题,提出基于改进YOLOv5s的数控机床轴承座缺陷检测算法。首先以HardSwish激活函数替换ConvNeXtv2中的GELU,并结合CSC模块提出全新CSCConvNeXtv2-HS结构,用以替换backbone网络C3模块,在降低计算复杂度的同时提升关键信息的特征提取能力;在Neck网络中引入尺度序列特征融合模块,提升模型对多通道信息的提取能力;最后采用Focal-Inner Loss损失函数,在提高训练收敛速度的同时,降低了类别分布不平衡带来的影响。实验表明,改进模型的准确率为91.09%,召回率为81.97%,平均精度均值为84.40%,处理速度为61.73 fps,各项评估指标较原始模型YOLOv5s分别提升2.52%、4.47%、6.7%和1.12 fps,能满足工业生产需求。

    Abstract:

    Currently, defect detection of CNC machine tool bearing seats primarily relies on manual visual inspection, which cannot meet the demands for high precision, high efficiency, and low error rates in industrial production. To address these issues, a defect detection algorithm based on an improved YOLOv5s is proposed for CNC machine tool bearing seats. Firstly, the HardSwish activation function is used to replace the GELU in ConvNeXtv2, and a novel CSCConvNeXtv2-HS structure is introduced, incorporating the CSC module to replace the C3 module in the backbone network. This modification reduces computational complexity while enhancing the feature extraction capability of key information. In the Neck network, a Scale Sequence Feature Fusion module is introduced to improve the model′s ability to extract multi-channel information. Finally, The final proposal of the Focal-Inner Loss loss function not only improves the speed of training convergence but also reduces the impact brought about by the imbalance in class distribution. Experimental results show that the improved model achieves an accuracy of 91.09%, a recall rate of 81.97%, and a mean Average Precision of 84.40%, with a processing speed of 61.73 fps. All evaluation metrics show improvements of 2.52%, 4.47%, 6.7%, and 1.12 fps compared to the original YOLOv5s model, thereby satisfying industrial production requirements.

    参考文献
    相似文献
    引证文献
引用本文

王浪,胥云,李琦,高亮,张佳骏.改进YOLOv5s的轴承座缺陷检测算法[J].电子测量技术,2025,48(18):142-149

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-11-13
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告