面向节点动态优先级的无人机信息收集优化算法
DOI:
CSTR:
作者:
作者单位:

1.华北电力大学电子与通信工程系 保定 071003;2.华北电力大学河北省电力物联网技术重点实验室 保定 071003; 3.天津市电力公司经济技术研究院 天津 300160

作者简介:

通讯作者:

中图分类号:

TN929.5

基金项目:

河北省省级科技计划(SZX2020034)项目资助


UAV information collection optimization algorithm for node dynamic priority
Author:
Affiliation:

1.Department of Electronic and Communication Engineering, North China Electric Power University,Baoding 071003, China; 2.Hebei Province Electric Power Internet of Things Technology Key Laboratory, North China Electric Power University, Baoding 071003, China;3.State Grid Tianjin Electric Power Corporation Economic and Technology Research Institute,Tianjin 300160, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在环境监测等分布式物联网应用场景中,由于节点监测的区域重要性以及收集数据量的不同,节点往往有不同的优先级。节点优先级的动态变化会使无人机频繁更换数据采集的目标节点,造成任务完成时间延长及能量的无端浪费。因此本文针对节点具有动态优先级的分布式物联网应用场景提出了一种基于DDQN的无人机任务完成时间与能耗联合优化算法。训练过程中,无人机在任务完成时间、能耗及避免节点数据溢出等约束下学习产生最优策略。仿真结果表明,与最大优先级策略、贪婪策略两种现有策略相比,所提算法任务完成时间分别降低9.2%、15.1%,能耗分别降低10%、16.3%;与DQN方法相比,所提算法收敛速度更快,训练过程更稳定。

    Abstract:

    In distributed IoT application scenarios such as environmental monitoring, nodes often have different priorities due to the different regional importance of node monitoring and the amount of data collected. The dynamic change of node priority will make the UAV frequently replace the target node of data acquisition, resulting in prolonged task completion time and unwarranted waste of energy. Therefore, we propose a joint optimization algorithm of UAV task completion time and energy consumption based on DDQN for distributed IoT application scenarios with dynamic priority of nodes. During the training process, the UAV learns the optimal strategy under the constraints of task completion time, energy consumption and avoiding node data overflow. The simulation results show that compared with the maximum priority strategy and greedy strategy, the task completion time of the proposed algorithm is reduced by 9.2% and 15.1% respectively, and the energy consumption is reduced by 10% and 16.3% respectively. Compared with the DQN method, the proposed algorithm converges faster and the training process is more stable.

    参考文献
    相似文献
    引证文献
引用本文

韩东升,郎宇航,黄丽妍.面向节点动态优先级的无人机信息收集优化算法[J].电子测量技术,2025,48(9):65-74

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-23
  • 出版日期:
文章二维码