融合多策略改进的班翠鸟算法及微电网调度
DOI:
CSTR:
作者:
作者单位:

1.云南民族大学电气信息工程学院 昆明 650050;2.云南省无人自主系统重点实验室 昆明 650500

作者简介:

通讯作者:

中图分类号:

TN819.1

基金项目:

国家自然科学基金(52061042)项目资助


A multi-strategy improved pelican optimization algorithm for microgrid scheduling
Author:
Affiliation:

1.School of Electrical and Information Technology,Yunnan Minzu University, Kunming 650050,China; 2.Key Laboratory of Unmanned Autonomous Systems of Yunnan Province,Kunming 650500,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决班翠鸟优化算法(PKO)收敛精度低和易陷入局部最优等问题,本文提出了一种多策略改进的班翠鸟优化算法(IPKO)。首先,采用拉丁超立方抽样避免在高维问题中出现过度集中或忽视潜在有利区域的情况,降低局部最优的风险;其次,引入鱼鹰算法(OOA)中的定位捕鱼机制,增强最优区域的探索和逃逸局部最优的能力;最后,融合新的坠落机制提高搜索稳定性,避免过早收敛,同时通过自适应变异率终止条件,自适应地平衡全局探索与局部开发,从而优化解的质量和搜索效率。比较了在不同特征维度下的训练测试准确率、运行时间等,并分析了种群大小和迭代次数对算法性能的影响;通过在12个基准测试函数上进行实验对比,实验结果表明,IPKO在收敛速度、求解精度、稳定性以及Friedman检验方面均优于其他对比算法。将IPKO应用于微电网调度问题中,证明了此算法较其他算法成本更低,较原算法PKO降低了1.92%,验证了实际问题中的有效性与可靠性。

    Abstract:

    To address the issues of low convergence accuracy and susceptibility to local optima in the PKO algorithm, this paper proposes a multi-strategy improved IPKO algorithm. First, Latin hypercube sampling is used to avoid overconcentration or neglect of potentially beneficial areas in high-dimensional problems, thus reducing the risk of local optima. Secondly, the positioning fishing mechanism from the OOA algorithm is introduced to enhance exploration of the optimal region and improve the ability to escape from local optima. Finally, a new falling mechanism is integrated to improve search stability and prevent premature convergence. An adaptive mutation rate termination condition is also applied to dynamically balance global exploration and local exploitation, optimizing solution quality and search efficiency. The training-testing accuracy and runtime under different feature dimensions are compared, and the impact of population size and iteration count on the algorithm′s performance is analyzed. Experimental results on 12 benchmark test functions show that IPKO outperforms other comparison algorithms in terms of convergence speed, solution accuracy, stability, and the Friedman test. When applied to the microgrid scheduling problem, IPKO demonstrates lower costs compared to other algorithms, with a reduction of 1.92% over the original PKO, confirming its effectiveness and reliability in practical applications.

    参考文献
    相似文献
    引证文献
引用本文

何印,孔玲玲,郑哲明.融合多策略改进的班翠鸟算法及微电网调度[J].电子测量技术,2025,48(7):55-65

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-12
  • 出版日期:
文章二维码