多放大倍率掩码自编码器的乳腺癌图像分类
DOI:
CSTR:
作者:
作者单位:

1.宁夏大学信息工程学院 银川 750021;2.宁夏“东数西算”人工智能与信息安全重点实验室 银川 750021

作者简介:

通讯作者:

中图分类号:

TP391;TN29

基金项目:

国家自然科学基金(62062057,12062021)、宁夏自然科学基金(2024AAC03063)、宁夏回族自治区重点研发项目(2023BDE03006)资助


Breast cancer image classification based on multi-magnification mask autoencoders
Author:
Affiliation:

1.School of Information Engineering, Ningxia University,Yinchuan 750021, China;2.Ningxia Key Laboratory of Artificial Intelligence and Information Security for Channeling Computing Re-sources from the East to the West,Yinchuan 750021, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    乳腺癌是对妇女健康构成严重威胁的疾病之一。早期诊断对于乳腺癌的治愈至关重要,计算机辅助乳腺癌分类诊断得到了广泛使用。虽然基于掩码自编码器的乳腺癌分类方法能够在乳腺癌病理图像已标注数据缺少的前提下进行模型性能的提升,但是现有的基于掩码自编码器的乳腺癌病理图像分类方法没有充分提取和融合不同放大倍率乳腺癌病理图像之间的特征信息。为了解决该问题,提出了一种基于多放大倍率掩码自编码器的乳腺癌病理图像分类方法。该方法在掩码自编码器的基础上结合放大独立和放大特异的优势。首先,设计了规则化噪音掩码模块来避免乳腺癌病理图像重要特征丢失。然后,将不同放大倍率乳腺癌病理图像块组合在一起输入到加入了交叉卷积映射的编码器中提取和融合不同放大倍率图像的特征。最后,在解码器中加入残差交叉注意力机制增强低放大倍率图像下细胞密度及排列顺序和高放大倍率图像下细胞纹理特征的融合。在BreakHis公共数据集上进行实验,与现有分类方法相比,该方法在Top-1 Accuracy、精确率、召回率和F1-Score上至少提高了约2%,说明该方法在良恶性乳腺癌病理图像准确分类方面表现出良好的性能。

    Abstract:

    Breast cancer is one of the diseases that pose a serious threat to women′s health. Early diagnosis is crucial for the cure of breast cancer, and computer-aided breast cancer classification and diagnosis has been widely used. Although the mask autoencoders breast cancer classification method can improve the model performance under the premise of the lack of labeled data in breast cancer pathology images, the existing mask autoencoders breast cancer pathology image classification method does not adequately extract and fuse the feature information between breast cancer pathology images with different magnifications. To solve this problem, a multi-magnification mask autoencoders breast cancer pathology image classification method is proposed, which combines the advantages of magnification independence and magnification specificity on the basis of mask autoencoders. First, a uniform noise masked module is designed to avoid the loss of important features in breast cancer pathology images. Then, blocks of breast cancer pathology images with different magnifications are combined together and fed into an encoder incorporating cross convolution mapping to extract and fuse features from images with different magnifications. Finally, a residual cross attention mechanism is incorporated into the decoder to enhance the fusion of cell density and alignment order under low magnification images and cell texture features under high magnification images. Experiments on the BreakHis public dataset show that the proposed method improves at least about 2% in Top-1 Accuracy, Precision, Recall, and F1-Score compared to existing classification methods. The results demonstrate that the proposed method exhibits good performance in accurately classifying benign and malignant breast cancer pathology images.

    参考文献
    相似文献
    引证文献
引用本文

司嘉龙,贾伟,赵雪芬,高宏娟.多放大倍率掩码自编码器的乳腺癌图像分类[J].电子测量技术,2025,48(10):127-143

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-07
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告