基于改进RT-DETR的轻量航拍图像检测算法
DOI:
CSTR:
作者:
作者单位:

华北理工大学电气工程学院 唐山 063210

作者简介:

通讯作者:

中图分类号:

TP391.41;TN919.8

基金项目:

河北省自然科学基金(F2021209006)项目资助


Lightweight aerial image detection algorithm based on improved RT-DETR
Author:
Affiliation:

School of Electrical Engineering,North China University of Science and Technology, Tangshan 063210,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对航拍遥感图像场景中目标体积小、背景复杂的问题,提出了一种基于RT-DETR改进的轻量化目标检测算法ELS-RTDETR。该算法提出并使用一种基于Vovnet网络改进的新主干网络LOB-Vovnet对原主干网络进行替换。在LOB-Vovnet中,设计提出了一种新的特征增强模块LRFF,提高检测模型对小目标的检测精度。同时为抑制复杂背景干扰,引入自适应通道提取的注意力机制SE。最后为均衡模型精度与体积,LOB-Vovnet将部分卷积替换为深度可分离卷积,并通过进行大量消融实验,对主干网络的深度和宽度重新调整。在AIFI中,引入级联群体注意力机制(CGA)有效减少多头注意力机制中的计算冗余。在数据集方面将RSOD数据集和NWPU VHR-10数据集进行融合,并通过添加仿射变换、相机底噪等效果对原始数据进行离线数据增强,使训练数据集更贴近真实应用场景。实验结果表明,改进模型ELS-RTDETR与原模型对比mAP@50提升2.7%,模型参数量减少了32.9%,面对困难检测目标实现了较好的检测效果,在SIMD数据集上进一步验证了改进方法的有效性。

    Abstract:

    In response to the challenges posed by small target volumes and complex backgrounds in aerial remote sensing images, a lightweight object detection algorithm named ELS-RTDETR, based on enhancements to RT-DETR, has been proposed. This algorithm introduces and utilizes a new backbone network called LOB-Vovnet, which is an improved version based on the Vovnet network, to replace the original backbone network.Within the LOB-Vovnet architecture, a novel feature enhancement module named LRFF (Lightweight receptive field focus) has been designed to enhance the detection accuracy of small targets. To address complex background interference, an attention mechanism called SE (Squeeze-and-Excitation) based on adaptive channel extraction has been introduced.To strike a balance between model accuracy and size, LOB-Vovnet replaces some convolutions with depthwise separable convolutions. Extensive ablation experiments have been conducted to readjust the depth and width of the backbone network. In the AIFI section, a Cascaded Group Attention (CGA) mechanism has been introduced to effectively reduce computational redundancy in multi-head attention mechanisms.Regarding datasets, the RSOD dataset and NWPU VHR-10 dataset have been merged. Additionally, offline data augmentation techniques such as affine transformations and camera noise have been applied to the original data to make the training dataset more closely aligned with real-world applications.Experimental results indicate that the improved ELS-RTDETR model has shown a 2.7% increase in mAP@50 compared to the original model, with a reduction in model parameters by 32.9%. It has demonstrated good detection performance for challenging targets. Further validation of the enhanced method has been conducted on the SIMD dataset to verify its effectiveness.

    参考文献
    相似文献
    引证文献
引用本文

张淑卿,肖凡,葛超.基于改进RT-DETR的轻量航拍图像检测算法[J].电子测量技术,2025,48(22):187-197

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-09
  • 出版日期:
文章二维码

重要通知公告

①《电子测量技术》期刊收款账户变更公告